File size: 2,322 Bytes
060d192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import sys

import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer

from config import config

LOCAL_PATH = "./bert/chinese-roberta-wwm-ext-large"

tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)

models = dict()


def get_bert_feature(text, word2ph, device=config.bert_gen_config.device):
    if (
        sys.platform == "darwin"
        and torch.backends.mps.is_available()
        and device == "cpu"
    ):
        device = "mps"
    if not device:
        device = "cuda"
    if device not in models.keys():
        models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)
        res = models[device](**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()

    assert len(word2ph) == len(text) + 2
    word2phone = word2ph
    phone_level_feature = []
    for i in range(len(word2phone)):
        repeat_feature = res[i].repeat(word2phone[i], 1)
        phone_level_feature.append(repeat_feature)

    phone_level_feature = torch.cat(phone_level_feature, dim=0)

    return phone_level_feature.T


if __name__ == "__main__":
    word_level_feature = torch.rand(38, 1024)  # 12个词,每个词1024维特征
    word2phone = [
        1,
        2,
        1,
        2,
        2,
        1,
        2,
        2,
        1,
        2,
        2,
        1,
        2,
        2,
        2,
        2,
        2,
        1,
        1,
        2,
        2,
        1,
        2,
        2,
        2,
        2,
        1,
        2,
        2,
        2,
        2,
        2,
        1,
        2,
        2,
        2,
        2,
        1,
    ]

    # 计算总帧数
    total_frames = sum(word2phone)
    print(word_level_feature.shape)
    print(word2phone)
    phone_level_feature = []
    for i in range(len(word2phone)):
        print(word_level_feature[i].shape)

        # 对每个词重复word2phone[i]次
        repeat_feature = word_level_feature[i].repeat(word2phone[i], 1)
        phone_level_feature.append(repeat_feature)

    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    print(phone_level_feature.shape)  # torch.Size([36, 1024])