AbeShinzo0708's picture
Upload 227 files
060d192
raw
history blame
14.6 kB
import os
import random
import torch
import torch.utils.data
from tqdm import tqdm
import numpy as np
from tools.log import logger
import commons
from mel_processing import spectrogram_torch, mel_spectrogram_torch
from utils import load_wav_to_torch, load_filepaths_and_text
from text import cleaned_text_to_sequence
from config import config
"""Multi speaker version"""
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
"""
1) loads audio, speaker_id, text pairs
2) normalizes text and converts them to sequences of integers
3) computes spectrograms from audio files.
"""
def __init__(self, audiopaths_sid_text, hparams):
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
self.max_wav_value = hparams.max_wav_value
self.sampling_rate = hparams.sampling_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sampling_rate = hparams.sampling_rate
self.spk_map = hparams.spk2id
self.hparams = hparams
self.use_mel_spec_posterior = getattr(
hparams, "use_mel_posterior_encoder", False
)
if self.use_mel_spec_posterior:
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
self.cleaned_text = getattr(hparams, "cleaned_text", False)
self.add_blank = hparams.add_blank
self.min_text_len = getattr(hparams, "min_text_len", 1)
self.max_text_len = getattr(hparams, "max_text_len", 384)
random.seed(1234)
random.shuffle(self.audiopaths_sid_text)
self._filter()
def _filter(self):
"""
Filter text & store spec lengths
"""
# Store spectrogram lengths for Bucketing
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
# spec_length = wav_length // hop_length
audiopaths_sid_text_new = []
lengths = []
skipped = 0
logger.info("Init dataset...")
for _id, spk, language, text, phones, tone, word2ph in tqdm(
self.audiopaths_sid_text
):
audiopath = f"{_id}"
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
phones = phones.split(" ")
tone = [int(i) for i in tone.split(" ")]
word2ph = [int(i) for i in word2ph.split(" ")]
audiopaths_sid_text_new.append(
[audiopath, spk, language, text, phones, tone, word2ph]
)
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
else:
skipped += 1
logger.info(
"skipped: "
+ str(skipped)
+ ", total: "
+ str(len(self.audiopaths_sid_text))
)
self.audiopaths_sid_text = audiopaths_sid_text_new
self.lengths = lengths
def get_audio_text_speaker_pair(self, audiopath_sid_text):
# separate filename, speaker_id and text
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
bert, ja_bert, en_bert, phones, tone, language = self.get_text(
text, word2ph, phones, tone, language, audiopath
)
spec, wav = self.get_audio(audiopath)
sid = torch.LongTensor([int(self.spk_map[sid])])
emo = torch.FloatTensor(np.load(audiopath.replace(".wav", ".emo.npy")))
return (phones, spec, wav, sid, tone, language, bert, ja_bert, en_bert, emo)
def get_audio(self, filename):
audio, sampling_rate = load_wav_to_torch(filename)
if sampling_rate != self.sampling_rate:
raise ValueError(
"{} {} SR doesn't match target {} SR".format(
filename, sampling_rate, self.sampling_rate
)
)
audio_norm = audio / self.max_wav_value
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if self.use_mel_spec_posterior:
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
try:
spec = torch.load(spec_filename)
except:
if self.use_mel_spec_posterior:
spec = mel_spectrogram_torch(
audio_norm,
self.filter_length,
self.n_mel_channels,
self.sampling_rate,
self.hop_length,
self.win_length,
self.hparams.mel_fmin,
self.hparams.mel_fmax,
center=False,
)
else:
spec = spectrogram_torch(
audio_norm,
self.filter_length,
self.sampling_rate,
self.hop_length,
self.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
if config.train_ms_config.spec_cache:
torch.save(spec, spec_filename)
return spec, audio_norm
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if self.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_path = wav_path.replace(".wav", ".bert.pt")
try:
bert_ori = torch.load(bert_path)
assert bert_ori.shape[-1] == len(phone)
except Exception as e:
logger.warning("Bert load Failed")
logger.warning(e)
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone))
en_bert = torch.zeros(1024, len(phone))
elif language_str == "JP":
bert = torch.zeros(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone))
elif language_str == "EN":
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(1024, len(phone))
en_bert = bert_ori
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, phone, tone, language
def get_sid(self, sid):
sid = torch.LongTensor([int(sid)])
return sid
def __getitem__(self, index):
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
def __len__(self):
return len(self.audiopaths_sid_text)
class TextAudioSpeakerCollate:
"""Zero-pads model inputs and targets"""
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""Collate's training batch from normalized text, audio and speaker identities
PARAMS
------
batch: [text_normalized, spec_normalized, wav_normalized, sid]
"""
# Right zero-pad all one-hot text sequences to max input length
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
)
max_text_len = max([len(x[0]) for x in batch])
max_spec_len = max([x[1].size(1) for x in batch])
max_wav_len = max([x[2].size(1) for x in batch])
text_lengths = torch.LongTensor(len(batch))
spec_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
sid = torch.LongTensor(len(batch))
text_padded = torch.LongTensor(len(batch), max_text_len)
tone_padded = torch.LongTensor(len(batch), max_text_len)
language_padded = torch.LongTensor(len(batch), max_text_len)
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
ja_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
en_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
emo = torch.FloatTensor(len(batch), 1024)
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
text_padded.zero_()
tone_padded.zero_()
language_padded.zero_()
spec_padded.zero_()
wav_padded.zero_()
bert_padded.zero_()
ja_bert_padded.zero_()
en_bert_padded.zero_()
emo.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
text = row[0]
text_padded[i, : text.size(0)] = text
text_lengths[i] = text.size(0)
spec = row[1]
spec_padded[i, :, : spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wav = row[2]
wav_padded[i, :, : wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
sid[i] = row[3]
tone = row[4]
tone_padded[i, : tone.size(0)] = tone
language = row[5]
language_padded[i, : language.size(0)] = language
bert = row[6]
bert_padded[i, :, : bert.size(1)] = bert
ja_bert = row[7]
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
en_bert = row[8]
en_bert_padded[i, :, : en_bert.size(1)] = en_bert
emo[i, :] = row[9]
return (
text_padded,
text_lengths,
spec_padded,
spec_lengths,
wav_padded,
wav_lengths,
sid,
tone_padded,
language_padded,
bert_padded,
ja_bert_padded,
en_bert_padded,
emo,
)
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Maintain similar input lengths in a batch.
Length groups are specified by boundaries.
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
It removes samples which are not included in the boundaries.
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
"""
def __init__(
self,
dataset,
batch_size,
boundaries,
num_replicas=None,
rank=None,
shuffle=True,
):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
try:
for i in range(len(buckets) - 1, 0, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
assert all(len(bucket) > 0 for bucket in buckets)
# When one bucket is not traversed
except Exception as e:
print("Bucket warning ", e)
for i in range(len(buckets) - 1, -1, -1):
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (
total_batch_size - (len_bucket % total_batch_size)
) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
if len_bucket == 0:
continue
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
# add extra samples to make it evenly divisible
rem = num_samples_bucket - len_bucket
ids_bucket = (
ids_bucket
+ ids_bucket * (rem // len_bucket)
+ ids_bucket[: (rem % len_bucket)]
)
# subsample
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [
bucket[idx]
for idx in ids_bucket[
j * self.batch_size : (j + 1) * self.batch_size
]
]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
return self.num_samples // self.batch_size