|
import os |
|
import gc |
|
import time |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision |
|
from PIL import Image |
|
from einops import rearrange, repeat |
|
from omegaconf import OmegaConf |
|
import safetensors.torch |
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.util import instantiate_from_config, ismap |
|
from modules import shared, sd_hijack, devices |
|
|
|
cached_ldsr_model: torch.nn.Module = None |
|
|
|
|
|
|
|
class LDSR: |
|
def load_model_from_config(self, half_attention): |
|
global cached_ldsr_model |
|
|
|
if shared.opts.ldsr_cached and cached_ldsr_model is not None: |
|
print("Loading model from cache") |
|
model: torch.nn.Module = cached_ldsr_model |
|
else: |
|
print(f"Loading model from {self.modelPath}") |
|
_, extension = os.path.splitext(self.modelPath) |
|
if extension.lower() == ".safetensors": |
|
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu") |
|
else: |
|
pl_sd = torch.load(self.modelPath, map_location="cpu") |
|
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd |
|
config = OmegaConf.load(self.yamlPath) |
|
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1" |
|
model: torch.nn.Module = instantiate_from_config(config.model) |
|
model.load_state_dict(sd, strict=False) |
|
model = model.to(shared.device) |
|
if half_attention: |
|
model = model.half() |
|
if shared.cmd_opts.opt_channelslast: |
|
model = model.to(memory_format=torch.channels_last) |
|
|
|
sd_hijack.model_hijack.hijack(model) |
|
model.eval() |
|
|
|
if shared.opts.ldsr_cached: |
|
cached_ldsr_model = model |
|
|
|
return {"model": model} |
|
|
|
def __init__(self, model_path, yaml_path): |
|
self.modelPath = model_path |
|
self.yamlPath = yaml_path |
|
|
|
@staticmethod |
|
def run(model, selected_path, custom_steps, eta): |
|
example = get_cond(selected_path) |
|
|
|
n_runs = 1 |
|
guider = None |
|
ckwargs = None |
|
ddim_use_x0_pred = False |
|
temperature = 1. |
|
eta = eta |
|
custom_shape = None |
|
|
|
height, width = example["image"].shape[1:3] |
|
split_input = height >= 128 and width >= 128 |
|
|
|
if split_input: |
|
ks = 128 |
|
stride = 64 |
|
vqf = 4 |
|
model.split_input_params = {"ks": (ks, ks), "stride": (stride, stride), |
|
"vqf": vqf, |
|
"patch_distributed_vq": True, |
|
"tie_braker": False, |
|
"clip_max_weight": 0.5, |
|
"clip_min_weight": 0.01, |
|
"clip_max_tie_weight": 0.5, |
|
"clip_min_tie_weight": 0.01} |
|
else: |
|
if hasattr(model, "split_input_params"): |
|
delattr(model, "split_input_params") |
|
|
|
x_t = None |
|
logs = None |
|
for _ in range(n_runs): |
|
if custom_shape is not None: |
|
x_t = torch.randn(1, custom_shape[1], custom_shape[2], custom_shape[3]).to(model.device) |
|
x_t = repeat(x_t, '1 c h w -> b c h w', b=custom_shape[0]) |
|
|
|
logs = make_convolutional_sample(example, model, |
|
custom_steps=custom_steps, |
|
eta=eta, quantize_x0=False, |
|
custom_shape=custom_shape, |
|
temperature=temperature, noise_dropout=0., |
|
corrector=guider, corrector_kwargs=ckwargs, x_T=x_t, |
|
ddim_use_x0_pred=ddim_use_x0_pred |
|
) |
|
return logs |
|
|
|
def super_resolution(self, image, steps=100, target_scale=2, half_attention=False): |
|
model = self.load_model_from_config(half_attention) |
|
|
|
|
|
diffusion_steps = int(steps) |
|
eta = 1.0 |
|
|
|
|
|
gc.collect() |
|
devices.torch_gc() |
|
|
|
im_og = image |
|
width_og, height_og = im_og.size |
|
|
|
down_sample_rate = target_scale / 4 |
|
wd = width_og * down_sample_rate |
|
hd = height_og * down_sample_rate |
|
width_downsampled_pre = int(np.ceil(wd)) |
|
height_downsampled_pre = int(np.ceil(hd)) |
|
|
|
if down_sample_rate != 1: |
|
print( |
|
f'Downsampling from [{width_og}, {height_og}] to [{width_downsampled_pre}, {height_downsampled_pre}]') |
|
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) |
|
else: |
|
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") |
|
|
|
|
|
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size |
|
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) |
|
|
|
logs = self.run(model["model"], im_padded, diffusion_steps, eta) |
|
|
|
sample = logs["sample"] |
|
sample = sample.detach().cpu() |
|
sample = torch.clamp(sample, -1., 1.) |
|
sample = (sample + 1.) / 2. * 255 |
|
sample = sample.numpy().astype(np.uint8) |
|
sample = np.transpose(sample, (0, 2, 3, 1)) |
|
a = Image.fromarray(sample[0]) |
|
|
|
|
|
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4)) |
|
|
|
del model |
|
gc.collect() |
|
devices.torch_gc() |
|
|
|
return a |
|
|
|
|
|
def get_cond(selected_path): |
|
example = {} |
|
up_f = 4 |
|
c = selected_path.convert('RGB') |
|
c = torch.unsqueeze(torchvision.transforms.ToTensor()(c), 0) |
|
c_up = torchvision.transforms.functional.resize(c, size=[up_f * c.shape[2], up_f * c.shape[3]], |
|
antialias=True) |
|
c_up = rearrange(c_up, '1 c h w -> 1 h w c') |
|
c = rearrange(c, '1 c h w -> 1 h w c') |
|
c = 2. * c - 1. |
|
|
|
c = c.to(shared.device) |
|
example["LR_image"] = c |
|
example["image"] = c_up |
|
|
|
return example |
|
|
|
|
|
@torch.no_grad() |
|
def convsample_ddim(model, cond, steps, shape, eta=1.0, callback=None, normals_sequence=None, |
|
mask=None, x0=None, quantize_x0=False, temperature=1., score_corrector=None, |
|
corrector_kwargs=None, x_t=None |
|
): |
|
ddim = DDIMSampler(model) |
|
bs = shape[0] |
|
shape = shape[1:] |
|
print(f"Sampling with eta = {eta}; steps: {steps}") |
|
samples, intermediates = ddim.sample(steps, batch_size=bs, shape=shape, conditioning=cond, callback=callback, |
|
normals_sequence=normals_sequence, quantize_x0=quantize_x0, eta=eta, |
|
mask=mask, x0=x0, temperature=temperature, verbose=False, |
|
score_corrector=score_corrector, |
|
corrector_kwargs=corrector_kwargs, x_t=x_t) |
|
|
|
return samples, intermediates |
|
|
|
|
|
@torch.no_grad() |
|
def make_convolutional_sample(batch, model, custom_steps=None, eta=1.0, quantize_x0=False, custom_shape=None, temperature=1., noise_dropout=0., corrector=None, |
|
corrector_kwargs=None, x_T=None, ddim_use_x0_pred=False): |
|
log = {} |
|
|
|
z, c, x, xrec, xc = model.get_input(batch, model.first_stage_key, |
|
return_first_stage_outputs=True, |
|
force_c_encode=not (hasattr(model, 'split_input_params') |
|
and model.cond_stage_key == 'coordinates_bbox'), |
|
return_original_cond=True) |
|
|
|
if custom_shape is not None: |
|
z = torch.randn(custom_shape) |
|
print(f"Generating {custom_shape[0]} samples of shape {custom_shape[1:]}") |
|
|
|
z0 = None |
|
|
|
log["input"] = x |
|
log["reconstruction"] = xrec |
|
|
|
if ismap(xc): |
|
log["original_conditioning"] = model.to_rgb(xc) |
|
if hasattr(model, 'cond_stage_key'): |
|
log[model.cond_stage_key] = model.to_rgb(xc) |
|
|
|
else: |
|
log["original_conditioning"] = xc if xc is not None else torch.zeros_like(x) |
|
if model.cond_stage_model: |
|
log[model.cond_stage_key] = xc if xc is not None else torch.zeros_like(x) |
|
if model.cond_stage_key == 'class_label': |
|
log[model.cond_stage_key] = xc[model.cond_stage_key] |
|
|
|
with model.ema_scope("Plotting"): |
|
t0 = time.time() |
|
|
|
sample, intermediates = convsample_ddim(model, c, steps=custom_steps, shape=z.shape, |
|
eta=eta, |
|
quantize_x0=quantize_x0, mask=None, x0=z0, |
|
temperature=temperature, score_corrector=corrector, corrector_kwargs=corrector_kwargs, |
|
x_t=x_T) |
|
t1 = time.time() |
|
|
|
if ddim_use_x0_pred: |
|
sample = intermediates['pred_x0'][-1] |
|
|
|
x_sample = model.decode_first_stage(sample) |
|
|
|
try: |
|
x_sample_noquant = model.decode_first_stage(sample, force_not_quantize=True) |
|
log["sample_noquant"] = x_sample_noquant |
|
log["sample_diff"] = torch.abs(x_sample_noquant - x_sample) |
|
except Exception: |
|
pass |
|
|
|
log["sample"] = x_sample |
|
log["time"] = t1 - t0 |
|
|
|
return log |
|
|