|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from einops import rearrange |
|
|
|
|
|
class VectorQuantizer2(nn.Module): |
|
""" |
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly |
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices. |
|
""" |
|
|
|
|
|
|
|
|
|
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", |
|
sane_index_shape=False, legacy=True): |
|
super().__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
self.legacy = legacy |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
self.remap = remap |
|
if self.remap is not None: |
|
self.register_buffer("used", torch.tensor(np.load(self.remap))) |
|
self.re_embed = self.used.shape[0] |
|
self.unknown_index = unknown_index |
|
if self.unknown_index == "extra": |
|
self.unknown_index = self.re_embed |
|
self.re_embed = self.re_embed + 1 |
|
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. " |
|
f"Using {self.unknown_index} for unknown indices.") |
|
else: |
|
self.re_embed = n_e |
|
|
|
self.sane_index_shape = sane_index_shape |
|
|
|
def remap_to_used(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
match = (inds[:, :, None] == used[None, None, ...]).long() |
|
new = match.argmax(-1) |
|
unknown = match.sum(2) < 1 |
|
if self.unknown_index == "random": |
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device) |
|
else: |
|
new[unknown] = self.unknown_index |
|
return new.reshape(ishape) |
|
|
|
def unmap_to_all(self, inds): |
|
ishape = inds.shape |
|
assert len(ishape) > 1 |
|
inds = inds.reshape(ishape[0], -1) |
|
used = self.used.to(inds) |
|
if self.re_embed > self.used.shape[0]: |
|
inds[inds >= self.used.shape[0]] = 0 |
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) |
|
return back.reshape(ishape) |
|
|
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False): |
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" |
|
assert rescale_logits is False, "Only for interface compatible with Gumbel" |
|
assert return_logits is False, "Only for interface compatible with Gumbel" |
|
|
|
z = rearrange(z, 'b c h w -> b h w c').contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \ |
|
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \ |
|
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n')) |
|
|
|
min_encoding_indices = torch.argmin(d, dim=1) |
|
z_q = self.embedding(min_encoding_indices).view(z.shape) |
|
perplexity = None |
|
min_encodings = None |
|
|
|
|
|
if not self.legacy: |
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
else: |
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * \ |
|
torch.mean((z_q - z.detach()) ** 2) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous() |
|
|
|
if self.remap is not None: |
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) |
|
min_encoding_indices = self.remap_to_used(min_encoding_indices) |
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) |
|
|
|
if self.sane_index_shape: |
|
min_encoding_indices = min_encoding_indices.reshape( |
|
z_q.shape[0], z_q.shape[2], z_q.shape[3]) |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
if self.remap is not None: |
|
indices = indices.reshape(shape[0], -1) |
|
indices = self.unmap_to_all(indices) |
|
indices = indices.reshape(-1) |
|
|
|
|
|
z_q = self.embedding(indices) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|