Abijith commited on
Commit
6d6f995
·
1 Parent(s): 8dae0bd

Upload 39 files

Browse files
Files changed (39) hide show
  1. cardamage_example/0006.JPEG +0 -0
  2. cardamage_example/0008.JPEG +0 -0
  3. cardamage_example/0134.JPEG +0 -0
  4. cardamage_example/0206.JPEG +0 -0
  5. main.py +169 -0
  6. per_segment_anything/__init__.py +15 -0
  7. per_segment_anything/__pycache__/__init__.cpython-38.pyc +0 -0
  8. per_segment_anything/__pycache__/automatic_mask_generator.cpython-38.pyc +0 -0
  9. per_segment_anything/__pycache__/build_sam.cpython-38.pyc +0 -0
  10. per_segment_anything/__pycache__/predictor.cpython-38.pyc +0 -0
  11. per_segment_anything/automatic_mask_generator.py +372 -0
  12. per_segment_anything/build_sam.py +155 -0
  13. per_segment_anything/modeling/__init__.py +12 -0
  14. per_segment_anything/modeling/__pycache__/__init__.cpython-38.pyc +0 -0
  15. per_segment_anything/modeling/__pycache__/common.cpython-38.pyc +0 -0
  16. per_segment_anything/modeling/__pycache__/image_encoder.cpython-38.pyc +0 -0
  17. per_segment_anything/modeling/__pycache__/mask_decoder.cpython-38.pyc +0 -0
  18. per_segment_anything/modeling/__pycache__/prompt_encoder.cpython-38.pyc +0 -0
  19. per_segment_anything/modeling/__pycache__/sam.cpython-38.pyc +0 -0
  20. per_segment_anything/modeling/__pycache__/tiny_vit_sam.cpython-38.pyc +0 -0
  21. per_segment_anything/modeling/__pycache__/transformer.cpython-38.pyc +0 -0
  22. per_segment_anything/modeling/common.py +43 -0
  23. per_segment_anything/modeling/image_encoder.py +395 -0
  24. per_segment_anything/modeling/mask_decoder.py +182 -0
  25. per_segment_anything/modeling/prompt_encoder.py +214 -0
  26. per_segment_anything/modeling/sam.py +183 -0
  27. per_segment_anything/modeling/tiny_vit_sam.py +716 -0
  28. per_segment_anything/modeling/transformer.py +252 -0
  29. per_segment_anything/predictor.py +296 -0
  30. per_segment_anything/utils/__init__.py +5 -0
  31. per_segment_anything/utils/__pycache__/__init__.cpython-38.pyc +0 -0
  32. per_segment_anything/utils/__pycache__/amg.cpython-38.pyc +0 -0
  33. per_segment_anything/utils/__pycache__/transforms.cpython-38.pyc +0 -0
  34. per_segment_anything/utils/amg.py +346 -0
  35. per_segment_anything/utils/onnx.py +144 -0
  36. per_segment_anything/utils/transforms.py +102 -0
  37. requirements.txt +8 -0
  38. show.py +28 -0
  39. weights/mobile_sam.pt +3 -0
cardamage_example/0006.JPEG ADDED
cardamage_example/0008.JPEG ADDED
cardamage_example/0134.JPEG ADDED
cardamage_example/0206.JPEG ADDED
main.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import numpy as np
4
+ from PIL import Image
5
+ import argparse
6
+ import pathlib
7
+ from torch.nn import functional as F
8
+
9
+ from show import *
10
+ from per_segment_anything import sam_model_registry, SamPredictor
11
+
12
+
13
+ parser = argparse.ArgumentParser()
14
+ parser.add_argument("-op", "--output-path", type=str, default='default')
15
+ args = parser.parse_args()
16
+
17
+
18
+ class ImageMask(gr.components.Image):
19
+ """
20
+ Sets: source="canvas", tool="sketch"
21
+ """
22
+
23
+ is_template = True
24
+
25
+ def __init__(self, **kwargs):
26
+ super().__init__(source="upload", tool='select', interactive=True, **kwargs)
27
+
28
+ def preprocess(self, x):
29
+ return super().preprocess(x)
30
+
31
+
32
+ def point_selection(mask_sim, topk=1):
33
+ # Top-1 point selection
34
+ w, h = mask_sim.shape
35
+ topk_xy = mask_sim.flatten(0).topk(topk)[1]
36
+ topk_x = (topk_xy // h).unsqueeze(0)
37
+ topk_y = (topk_xy - topk_x * h)
38
+ topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
39
+ topk_label = np.array([1] * topk)
40
+ topk_xy = topk_xy.cpu().numpy()
41
+
42
+ # Top-last point selection
43
+ last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1]
44
+ last_x = (last_xy // h).unsqueeze(0)
45
+ last_y = (last_xy - last_x * h)
46
+ last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0)
47
+ last_label = np.array([0] * topk)
48
+ last_xy = last_xy.cpu().numpy()
49
+
50
+ return topk_xy, topk_label, last_xy, last_label
51
+
52
+ def inference_scribble(image):
53
+ # in context image and mask
54
+ ic_image = image["image"]
55
+ ic_mask = image["mask"]
56
+ ic_image = np.array(ic_image.convert("RGB"))
57
+ ic_mask = np.array(ic_mask.convert("RGB"))
58
+
59
+ # sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth' # SAM Model
60
+ sam_type, sam_ckpt = 'vit_t', 'weights/mobile_sam.pt' # MobileSAM
61
+ # sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda() #SAM loading
62
+ sam = sam_model_registry[sam_type](checkpoint=sam_ckpt) #SAM loading
63
+ # sam = sam_model_registry[sam_type](checkpoint=sam_ckpt) # MObileSAM loading
64
+ predictor = SamPredictor(sam)
65
+
66
+ # Image features encoding
67
+ ref_mask = predictor.set_image(ic_image, ic_mask)
68
+ ref_feat = predictor.features.squeeze().permute(1, 2, 0)
69
+
70
+ ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
71
+ ref_mask = ref_mask.squeeze()[0]
72
+
73
+ # Target feature extraction
74
+ print("======> Obtain Location Prior" )
75
+ target_feat = ref_feat[ref_mask > 0]
76
+ target_embedding = target_feat.mean(0).unsqueeze(0)
77
+ target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
78
+ target_embedding = target_embedding.unsqueeze(0)
79
+
80
+ test_image = ic_image
81
+ outputs = []
82
+
83
+ print("======> Testing Image")
84
+ # Image feature encoding
85
+ predictor.set_image(test_image)
86
+ test_feat = predictor.features.squeeze()
87
+
88
+ # Cosine similarity
89
+ C, h, w = test_feat.shape
90
+ test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
91
+ test_feat = test_feat.reshape(C, h * w)
92
+ sim = target_feat @ test_feat
93
+
94
+ sim = sim.reshape(1, 1, h, w)
95
+ sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
96
+ sim = predictor.model.postprocess_masks(
97
+ sim,
98
+ input_size=predictor.input_size,
99
+ original_size=predictor.original_size).squeeze()
100
+
101
+ # Positive-negative location prior
102
+ topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
103
+ topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
104
+ topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
105
+
106
+ # Obtain the target guidance for cross-attention layers
107
+ sim = (sim - sim.mean()) / torch.std(sim)
108
+ sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
109
+ attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
110
+
111
+ # First-step prediction
112
+ masks, scores, logits, _ = predictor.predict(
113
+ point_coords=topk_xy,
114
+ point_labels=topk_label,
115
+ multimask_output=True,
116
+ attn_sim=attn_sim, # Target-guided Attention
117
+ target_embedding=target_embedding # Target-semantic Prompting
118
+ )
119
+ best_idx = 0
120
+
121
+ # Cascaded Post-refinement-1
122
+ masks, scores, logits, _ = predictor.predict(
123
+ point_coords=topk_xy,
124
+ point_labels=topk_label,
125
+ mask_input=logits[best_idx: best_idx + 1, :, :],
126
+ multimask_output=True)
127
+ best_idx = np.argmax(scores)
128
+
129
+ # Cascaded Post-refinement-2
130
+ y, x = np.nonzero(masks[best_idx])
131
+ x_min = x.min()
132
+ x_max = x.max()
133
+ y_min = y.min()
134
+ y_max = y.max()
135
+ input_box = np.array([x_min, y_min, x_max, y_max])
136
+ masks, scores, logits, _ = predictor.predict(
137
+ point_coords=topk_xy,
138
+ point_labels=topk_label,
139
+ box=input_box[None, :],
140
+ mask_input=logits[best_idx: best_idx + 1, :, :],
141
+ multimask_output=True)
142
+ best_idx = np.argmax(scores)
143
+
144
+ final_mask = masks[best_idx]
145
+ mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
146
+ mask_colors[final_mask, :] = np.array([[128, 0, 0]])
147
+ # Save annotations
148
+
149
+ return [Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'),
150
+ Image.fromarray((mask_colors ).astype('uint8'), 'RGB')]
151
+
152
+ main_scribble = gr.Interface(
153
+ fn=inference_scribble,
154
+ inputs=
155
+ gr.ImageMask(label="[Stroke] Draw on Image", type='pil'),
156
+ outputs=[
157
+ gr.outputs.Image(type="pil", label="Mask with Image"),
158
+ gr.outputs.Image(type="pil", label="Mask")
159
+ ],
160
+ allow_flagging="never",
161
+ title="SAM based Segment Annotator.",
162
+ description='Sketch the portion where you want to create Mask.',
163
+ examples=[
164
+ "./cardamage_example/0006.JPEG",
165
+ "./cardamage_example/0008.JPEG",
166
+ "./cardamage_example/0206.JPEG"
167
+ ]
168
+ )
169
+ main_scribble.launch(share=True)
per_segment_anything/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .build_sam import (
8
+ build_sam,
9
+ build_sam_vit_h,
10
+ build_sam_vit_l,
11
+ build_sam_vit_b,
12
+ sam_model_registry,
13
+ )
14
+ from .predictor import SamPredictor
15
+ from .automatic_mask_generator import SamAutomaticMaskGenerator
per_segment_anything/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (413 Bytes). View file
 
per_segment_anything/__pycache__/automatic_mask_generator.cpython-38.pyc ADDED
Binary file (11.4 kB). View file
 
per_segment_anything/__pycache__/build_sam.cpython-38.pyc ADDED
Binary file (3.08 kB). View file
 
per_segment_anything/__pycache__/predictor.cpython-38.pyc ADDED
Binary file (10.2 kB). View file
 
per_segment_anything/automatic_mask_generator.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
10
+
11
+ from typing import Any, Dict, List, Optional, Tuple
12
+
13
+ from .modeling import Sam
14
+ from .predictor import SamPredictor
15
+ from .utils.amg import (
16
+ MaskData,
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ remove_small_regions,
28
+ rle_to_mask,
29
+ uncrop_boxes_xyxy,
30
+ uncrop_masks,
31
+ uncrop_points,
32
+ )
33
+
34
+
35
+ class SamAutomaticMaskGenerator:
36
+ def __init__(
37
+ self,
38
+ model: Sam,
39
+ points_per_side: Optional[int] = 32,
40
+ points_per_batch: int = 64,
41
+ pred_iou_thresh: float = 0.88,
42
+ stability_score_thresh: float = 0.95,
43
+ stability_score_offset: float = 1.0,
44
+ box_nms_thresh: float = 0.7,
45
+ crop_n_layers: int = 0,
46
+ crop_nms_thresh: float = 0.7,
47
+ crop_overlap_ratio: float = 512 / 1500,
48
+ crop_n_points_downscale_factor: int = 1,
49
+ point_grids: Optional[List[np.ndarray]] = None,
50
+ min_mask_region_area: int = 0,
51
+ output_mode: str = "binary_mask",
52
+ ) -> None:
53
+ """
54
+ Using a SAM model, generates masks for the entire image.
55
+ Generates a grid of point prompts over the image, then filters
56
+ low quality and duplicate masks. The default settings are chosen
57
+ for SAM with a ViT-H backbone.
58
+
59
+ Arguments:
60
+ model (Sam): The SAM model to use for mask prediction.
61
+ points_per_side (int or None): The number of points to be sampled
62
+ along one side of the image. The total number of points is
63
+ points_per_side**2. If None, 'point_grids' must provide explicit
64
+ point sampling.
65
+ points_per_batch (int): Sets the number of points run simultaneously
66
+ by the model. Higher numbers may be faster but use more GPU memory.
67
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
68
+ model's predicted mask quality.
69
+ stability_score_thresh (float): A filtering threshold in [0,1], using
70
+ the stability of the mask under changes to the cutoff used to binarize
71
+ the model's mask predictions.
72
+ stability_score_offset (float): The amount to shift the cutoff when
73
+ calculated the stability score.
74
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
75
+ suppression to filter duplicate masks.
76
+ crop_n_layers (int): If >0, mask prediction will be run again on
77
+ crops of the image. Sets the number of layers to run, where each
78
+ layer has 2**i_layer number of image crops.
79
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
80
+ suppression to filter duplicate masks between different crops.
81
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
82
+ In the first crop layer, crops will overlap by this fraction of
83
+ the image length. Later layers with more crops scale down this overlap.
84
+ crop_n_points_downscale_factor (int): The number of points-per-side
85
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
86
+ point_grids (list(np.ndarray) or None): A list over explicit grids
87
+ of points used for sampling, normalized to [0,1]. The nth grid in the
88
+ list is used in the nth crop layer. Exclusive with points_per_side.
89
+ min_mask_region_area (int): If >0, postprocessing will be applied
90
+ to remove disconnected regions and holes in masks with area smaller
91
+ than min_mask_region_area. Requires opencv.
92
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
93
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
94
+ For large resolutions, 'binary_mask' may consume large amounts of
95
+ memory.
96
+ """
97
+
98
+ assert (points_per_side is None) != (
99
+ point_grids is None
100
+ ), "Exactly one of points_per_side or point_grid must be provided."
101
+ if points_per_side is not None:
102
+ self.point_grids = build_all_layer_point_grids(
103
+ points_per_side,
104
+ crop_n_layers,
105
+ crop_n_points_downscale_factor,
106
+ )
107
+ elif point_grids is not None:
108
+ self.point_grids = point_grids
109
+ else:
110
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
111
+
112
+ assert output_mode in [
113
+ "binary_mask",
114
+ "uncompressed_rle",
115
+ "coco_rle",
116
+ ], f"Unknown output_mode {output_mode}."
117
+ if output_mode == "coco_rle":
118
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
119
+
120
+ if min_mask_region_area > 0:
121
+ import cv2 # type: ignore # noqa: F401
122
+
123
+ self.predictor = SamPredictor(model)
124
+ self.points_per_batch = points_per_batch
125
+ self.pred_iou_thresh = pred_iou_thresh
126
+ self.stability_score_thresh = stability_score_thresh
127
+ self.stability_score_offset = stability_score_offset
128
+ self.box_nms_thresh = box_nms_thresh
129
+ self.crop_n_layers = crop_n_layers
130
+ self.crop_nms_thresh = crop_nms_thresh
131
+ self.crop_overlap_ratio = crop_overlap_ratio
132
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
133
+ self.min_mask_region_area = min_mask_region_area
134
+ self.output_mode = output_mode
135
+
136
+ @torch.no_grad()
137
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
138
+ """
139
+ Generates masks for the given image.
140
+
141
+ Arguments:
142
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
143
+
144
+ Returns:
145
+ list(dict(str, any)): A list over records for masks. Each record is
146
+ a dict containing the following keys:
147
+ segmentation (dict(str, any) or np.ndarray): The mask. If
148
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
149
+ is a dictionary containing the RLE.
150
+ bbox (list(float)): The box around the mask, in XYWH format.
151
+ area (int): The area in pixels of the mask.
152
+ predicted_iou (float): The model's own prediction of the mask's
153
+ quality. This is filtered by the pred_iou_thresh parameter.
154
+ point_coords (list(list(float))): The point coordinates input
155
+ to the model to generate this mask.
156
+ stability_score (float): A measure of the mask's quality. This
157
+ is filtered on using the stability_score_thresh parameter.
158
+ crop_box (list(float)): The crop of the image used to generate
159
+ the mask, given in XYWH format.
160
+ """
161
+
162
+ # Generate masks
163
+ mask_data = self._generate_masks(image)
164
+
165
+ # Filter small disconnected regions and holes in masks
166
+ if self.min_mask_region_area > 0:
167
+ mask_data = self.postprocess_small_regions(
168
+ mask_data,
169
+ self.min_mask_region_area,
170
+ max(self.box_nms_thresh, self.crop_nms_thresh),
171
+ )
172
+
173
+ # Encode masks
174
+ if self.output_mode == "coco_rle":
175
+ mask_data["segmentations"] = [coco_encode_rle(rle) for rle in mask_data["rles"]]
176
+ elif self.output_mode == "binary_mask":
177
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
178
+ else:
179
+ mask_data["segmentations"] = mask_data["rles"]
180
+
181
+ # Write mask records
182
+ curr_anns = []
183
+ for idx in range(len(mask_data["segmentations"])):
184
+ ann = {
185
+ "segmentation": mask_data["segmentations"][idx],
186
+ "area": area_from_rle(mask_data["rles"][idx]),
187
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
188
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
189
+ "point_coords": [mask_data["points"][idx].tolist()],
190
+ "stability_score": mask_data["stability_score"][idx].item(),
191
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
192
+ }
193
+ curr_anns.append(ann)
194
+
195
+ return curr_anns
196
+
197
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
198
+ orig_size = image.shape[:2]
199
+ crop_boxes, layer_idxs = generate_crop_boxes(
200
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
201
+ )
202
+
203
+ # Iterate over image crops
204
+ data = MaskData()
205
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
206
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
207
+ data.cat(crop_data)
208
+
209
+ # Remove duplicate masks between crops
210
+ if len(crop_boxes) > 1:
211
+ # Prefer masks from smaller crops
212
+ scores = 1 / box_area(data["crop_boxes"])
213
+ scores = scores.to(data["boxes"].device)
214
+ keep_by_nms = batched_nms(
215
+ data["boxes"].float(),
216
+ scores,
217
+ torch.zeros_like(data["boxes"][:, 0]), # categories
218
+ iou_threshold=self.crop_nms_thresh,
219
+ )
220
+ data.filter(keep_by_nms)
221
+
222
+ data.to_numpy()
223
+ return data
224
+
225
+ def _process_crop(
226
+ self,
227
+ image: np.ndarray,
228
+ crop_box: List[int],
229
+ crop_layer_idx: int,
230
+ orig_size: Tuple[int, ...],
231
+ ) -> MaskData:
232
+ # Crop the image and calculate embeddings
233
+ x0, y0, x1, y1 = crop_box
234
+ cropped_im = image[y0:y1, x0:x1, :]
235
+ cropped_im_size = cropped_im.shape[:2]
236
+ self.predictor.set_image(cropped_im)
237
+
238
+ # Get points for this crop
239
+ points_scale = np.array(cropped_im_size)[None, ::-1]
240
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
241
+
242
+ # Generate masks for this crop in batches
243
+ data = MaskData()
244
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
245
+ batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size)
246
+ data.cat(batch_data)
247
+ del batch_data
248
+ self.predictor.reset_image()
249
+
250
+ # Remove duplicates within this crop.
251
+ keep_by_nms = batched_nms(
252
+ data["boxes"].float(),
253
+ data["iou_preds"],
254
+ torch.zeros_like(data["boxes"][:, 0]), # categories
255
+ iou_threshold=self.box_nms_thresh,
256
+ )
257
+ data.filter(keep_by_nms)
258
+
259
+ # Return to the original image frame
260
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
261
+ data["points"] = uncrop_points(data["points"], crop_box)
262
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
263
+
264
+ return data
265
+
266
+ def _process_batch(
267
+ self,
268
+ points: np.ndarray,
269
+ im_size: Tuple[int, ...],
270
+ crop_box: List[int],
271
+ orig_size: Tuple[int, ...],
272
+ ) -> MaskData:
273
+ orig_h, orig_w = orig_size
274
+
275
+ # Run model on this batch
276
+ transformed_points = self.predictor.transform.apply_coords(points, im_size)
277
+ in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
278
+ in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
279
+ masks, iou_preds, _ = self.predictor.predict_torch(
280
+ in_points[:, None, :],
281
+ in_labels[:, None],
282
+ multimask_output=True,
283
+ return_logits=True,
284
+ )
285
+
286
+ # Serialize predictions and store in MaskData
287
+ data = MaskData(
288
+ masks=masks.flatten(0, 1),
289
+ iou_preds=iou_preds.flatten(0, 1),
290
+ points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
291
+ )
292
+ del masks
293
+
294
+ # Filter by predicted IoU
295
+ if self.pred_iou_thresh > 0.0:
296
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
297
+ data.filter(keep_mask)
298
+
299
+ # Calculate stability score
300
+ data["stability_score"] = calculate_stability_score(
301
+ data["masks"], self.predictor.model.mask_threshold, self.stability_score_offset
302
+ )
303
+ if self.stability_score_thresh > 0.0:
304
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
305
+ data.filter(keep_mask)
306
+
307
+ # Threshold masks and calculate boxes
308
+ data["masks"] = data["masks"] > self.predictor.model.mask_threshold
309
+ data["boxes"] = batched_mask_to_box(data["masks"])
310
+
311
+ # Filter boxes that touch crop boundaries
312
+ keep_mask = ~is_box_near_crop_edge(data["boxes"], crop_box, [0, 0, orig_w, orig_h])
313
+ if not torch.all(keep_mask):
314
+ data.filter(keep_mask)
315
+
316
+ # Compress to RLE
317
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
318
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
319
+ del data["masks"]
320
+
321
+ return data
322
+
323
+ @staticmethod
324
+ def postprocess_small_regions(
325
+ mask_data: MaskData, min_area: int, nms_thresh: float
326
+ ) -> MaskData:
327
+ """
328
+ Removes small disconnected regions and holes in masks, then reruns
329
+ box NMS to remove any new duplicates.
330
+
331
+ Edits mask_data in place.
332
+
333
+ Requires open-cv as a dependency.
334
+ """
335
+ if len(mask_data["rles"]) == 0:
336
+ return mask_data
337
+
338
+ # Filter small disconnected regions and holes
339
+ new_masks = []
340
+ scores = []
341
+ for rle in mask_data["rles"]:
342
+ mask = rle_to_mask(rle)
343
+
344
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
345
+ unchanged = not changed
346
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
347
+ unchanged = unchanged and not changed
348
+
349
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
350
+ # Give score=0 to changed masks and score=1 to unchanged masks
351
+ # so NMS will prefer ones that didn't need postprocessing
352
+ scores.append(float(unchanged))
353
+
354
+ # Recalculate boxes and remove any new duplicates
355
+ masks = torch.cat(new_masks, dim=0)
356
+ boxes = batched_mask_to_box(masks)
357
+ keep_by_nms = batched_nms(
358
+ boxes.float(),
359
+ torch.as_tensor(scores),
360
+ torch.zeros_like(boxes[:, 0]), # categories
361
+ iou_threshold=nms_thresh,
362
+ )
363
+
364
+ # Only recalculate RLEs for masks that have changed
365
+ for i_mask in keep_by_nms:
366
+ if scores[i_mask] == 0.0:
367
+ mask_torch = masks[i_mask].unsqueeze(0)
368
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
369
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
370
+ mask_data.filter(keep_by_nms)
371
+
372
+ return mask_data
per_segment_anything/build_sam.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+
9
+ from functools import partial
10
+
11
+ from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer, TinyViT
12
+
13
+
14
+ def build_sam_vit_h(checkpoint=None):
15
+ return _build_sam(
16
+ encoder_embed_dim=1280,
17
+ encoder_depth=32,
18
+ encoder_num_heads=16,
19
+ encoder_global_attn_indexes=[7, 15, 23, 31],
20
+ checkpoint=checkpoint,
21
+ )
22
+
23
+
24
+ build_sam = build_sam_vit_h
25
+
26
+
27
+ def build_sam_vit_l(checkpoint=None):
28
+ return _build_sam(
29
+ encoder_embed_dim=1024,
30
+ encoder_depth=24,
31
+ encoder_num_heads=16,
32
+ encoder_global_attn_indexes=[5, 11, 17, 23],
33
+ checkpoint=checkpoint,
34
+ )
35
+
36
+
37
+ def build_sam_vit_b(checkpoint=None):
38
+ return _build_sam(
39
+ encoder_embed_dim=768,
40
+ encoder_depth=12,
41
+ encoder_num_heads=12,
42
+ encoder_global_attn_indexes=[2, 5, 8, 11],
43
+ checkpoint=checkpoint,
44
+ )
45
+
46
+ def build_sam_vit_t(checkpoint=None):
47
+ prompt_embed_dim = 256
48
+ image_size = 1024
49
+ vit_patch_size = 16
50
+ image_embedding_size = image_size // vit_patch_size
51
+ mobile_sam = Sam(
52
+ image_encoder=TinyViT(img_size=1024, in_chans=3, num_classes=1000,
53
+ embed_dims=[64, 128, 160, 320],
54
+ depths=[2, 2, 6, 2],
55
+ num_heads=[2, 4, 5, 10],
56
+ window_sizes=[7, 7, 14, 7],
57
+ mlp_ratio=4.,
58
+ drop_rate=0.,
59
+ drop_path_rate=0.0,
60
+ use_checkpoint=False,
61
+ mbconv_expand_ratio=4.0,
62
+ local_conv_size=3,
63
+ layer_lr_decay=0.8
64
+ ),
65
+ prompt_encoder=PromptEncoder(
66
+ embed_dim=prompt_embed_dim,
67
+ image_embedding_size=(image_embedding_size, image_embedding_size),
68
+ input_image_size=(image_size, image_size),
69
+ mask_in_chans=16,
70
+ ),
71
+ mask_decoder=MaskDecoder(
72
+ num_multimask_outputs=3,
73
+ transformer=TwoWayTransformer(
74
+ depth=2,
75
+ embedding_dim=prompt_embed_dim,
76
+ mlp_dim=2048,
77
+ num_heads=8,
78
+ ),
79
+ transformer_dim=prompt_embed_dim,
80
+ iou_head_depth=3,
81
+ iou_head_hidden_dim=256,
82
+ ),
83
+ pixel_mean=[123.675, 116.28, 103.53],
84
+ pixel_std=[58.395, 57.12, 57.375],
85
+ )
86
+
87
+ mobile_sam.eval()
88
+ if checkpoint is not None:
89
+ with open(checkpoint, "rb") as f:
90
+ state_dict = torch.load(f)
91
+ mobile_sam.load_state_dict(state_dict)
92
+ return mobile_sam
93
+
94
+ sam_model_registry = {
95
+ "default": build_sam_vit_h,
96
+ "vit_h": build_sam_vit_h,
97
+ "vit_l": build_sam_vit_l,
98
+ "vit_b": build_sam_vit_b,
99
+ "vit_t": build_sam_vit_t,
100
+ }
101
+
102
+
103
+ def _build_sam(
104
+ encoder_embed_dim,
105
+ encoder_depth,
106
+ encoder_num_heads,
107
+ encoder_global_attn_indexes,
108
+ checkpoint=None,
109
+ ):
110
+ prompt_embed_dim = 256
111
+ image_size = 1024
112
+ vit_patch_size = 16
113
+ image_embedding_size = image_size // vit_patch_size
114
+ sam = Sam(
115
+ image_encoder=ImageEncoderViT(
116
+ depth=encoder_depth,
117
+ embed_dim=encoder_embed_dim,
118
+ img_size=image_size,
119
+ mlp_ratio=4,
120
+ norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
121
+ num_heads=encoder_num_heads,
122
+ patch_size=vit_patch_size,
123
+ qkv_bias=True,
124
+ use_rel_pos=True,
125
+ global_attn_indexes=encoder_global_attn_indexes,
126
+ window_size=14,
127
+ out_chans=prompt_embed_dim,
128
+ ),
129
+ prompt_encoder=PromptEncoder(
130
+ embed_dim=prompt_embed_dim,
131
+ image_embedding_size=(image_embedding_size, image_embedding_size),
132
+ input_image_size=(image_size, image_size),
133
+ mask_in_chans=16,
134
+ ),
135
+ mask_decoder=MaskDecoder(
136
+ num_multimask_outputs=3,
137
+ transformer=TwoWayTransformer(
138
+ depth=2,
139
+ embedding_dim=prompt_embed_dim,
140
+ mlp_dim=2048,
141
+ num_heads=8,
142
+ ),
143
+ transformer_dim=prompt_embed_dim,
144
+ iou_head_depth=3,
145
+ iou_head_hidden_dim=256,
146
+ ),
147
+ pixel_mean=[123.675, 116.28, 103.53],
148
+ pixel_std=[58.395, 57.12, 57.375],
149
+ )
150
+ sam.eval()
151
+ if checkpoint is not None:
152
+ with open(checkpoint, "rb") as f:
153
+ state_dict = torch.load(f)
154
+ sam.load_state_dict(state_dict)
155
+ return sam
per_segment_anything/modeling/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from .sam import Sam
8
+ from .image_encoder import ImageEncoderViT
9
+ from .mask_decoder import MaskDecoder
10
+ from .prompt_encoder import PromptEncoder
11
+ from .transformer import TwoWayTransformer
12
+ from .tiny_vit_sam import TinyViT
per_segment_anything/modeling/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (444 Bytes). View file
 
per_segment_anything/modeling/__pycache__/common.cpython-38.pyc ADDED
Binary file (1.74 kB). View file
 
per_segment_anything/modeling/__pycache__/image_encoder.cpython-38.pyc ADDED
Binary file (12.5 kB). View file
 
per_segment_anything/modeling/__pycache__/mask_decoder.cpython-38.pyc ADDED
Binary file (5.51 kB). View file
 
per_segment_anything/modeling/__pycache__/prompt_encoder.cpython-38.pyc ADDED
Binary file (7.68 kB). View file
 
per_segment_anything/modeling/__pycache__/sam.cpython-38.pyc ADDED
Binary file (6.96 kB). View file
 
per_segment_anything/modeling/__pycache__/tiny_vit_sam.cpython-38.pyc ADDED
Binary file (21 kB). View file
 
per_segment_anything/modeling/__pycache__/transformer.cpython-38.pyc ADDED
Binary file (6.76 kB). View file
 
per_segment_anything/modeling/common.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+ from typing import Type
11
+
12
+
13
+ class MLPBlock(nn.Module):
14
+ def __init__(
15
+ self,
16
+ embedding_dim: int,
17
+ mlp_dim: int,
18
+ act: Type[nn.Module] = nn.GELU,
19
+ ) -> None:
20
+ super().__init__()
21
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
22
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
23
+ self.act = act()
24
+
25
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
26
+ return self.lin2(self.act(self.lin1(x)))
27
+
28
+
29
+ # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
30
+ # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
31
+ class LayerNorm2d(nn.Module):
32
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
33
+ super().__init__()
34
+ self.weight = nn.Parameter(torch.ones(num_channels))
35
+ self.bias = nn.Parameter(torch.zeros(num_channels))
36
+ self.eps = eps
37
+
38
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
39
+ u = x.mean(1, keepdim=True)
40
+ s = (x - u).pow(2).mean(1, keepdim=True)
41
+ x = (x - u) / torch.sqrt(s + self.eps)
42
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
43
+ return x
per_segment_anything/modeling/image_encoder.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from typing import Optional, Tuple, Type
12
+
13
+ from .common import LayerNorm2d, MLPBlock
14
+
15
+
16
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
17
+ class ImageEncoderViT(nn.Module):
18
+ def __init__(
19
+ self,
20
+ img_size: int = 1024,
21
+ patch_size: int = 16,
22
+ in_chans: int = 3,
23
+ embed_dim: int = 768,
24
+ depth: int = 12,
25
+ num_heads: int = 12,
26
+ mlp_ratio: float = 4.0,
27
+ out_chans: int = 256,
28
+ qkv_bias: bool = True,
29
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
30
+ act_layer: Type[nn.Module] = nn.GELU,
31
+ use_abs_pos: bool = True,
32
+ use_rel_pos: bool = False,
33
+ rel_pos_zero_init: bool = True,
34
+ window_size: int = 0,
35
+ global_attn_indexes: Tuple[int, ...] = (),
36
+ ) -> None:
37
+ """
38
+ Args:
39
+ img_size (int): Input image size.
40
+ patch_size (int): Patch size.
41
+ in_chans (int): Number of input image channels.
42
+ embed_dim (int): Patch embedding dimension.
43
+ depth (int): Depth of ViT.
44
+ num_heads (int): Number of attention heads in each ViT block.
45
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
46
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
47
+ norm_layer (nn.Module): Normalization layer.
48
+ act_layer (nn.Module): Activation layer.
49
+ use_abs_pos (bool): If True, use absolute positional embeddings.
50
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
51
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
52
+ window_size (int): Window size for window attention blocks.
53
+ global_attn_indexes (list): Indexes for blocks using global attention.
54
+ """
55
+ super().__init__()
56
+ self.img_size = img_size
57
+
58
+ self.patch_embed = PatchEmbed(
59
+ kernel_size=(patch_size, patch_size),
60
+ stride=(patch_size, patch_size),
61
+ in_chans=in_chans,
62
+ embed_dim=embed_dim,
63
+ )
64
+
65
+ self.pos_embed: Optional[nn.Parameter] = None
66
+ if use_abs_pos:
67
+ # Initialize absolute positional embedding with pretrain image size.
68
+ self.pos_embed = nn.Parameter(
69
+ torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
70
+ )
71
+
72
+ self.blocks = nn.ModuleList()
73
+ for i in range(depth):
74
+ block = Block(
75
+ dim=embed_dim,
76
+ num_heads=num_heads,
77
+ mlp_ratio=mlp_ratio,
78
+ qkv_bias=qkv_bias,
79
+ norm_layer=norm_layer,
80
+ act_layer=act_layer,
81
+ use_rel_pos=use_rel_pos,
82
+ rel_pos_zero_init=rel_pos_zero_init,
83
+ window_size=window_size if i not in global_attn_indexes else 0,
84
+ input_size=(img_size // patch_size, img_size // patch_size),
85
+ )
86
+ self.blocks.append(block)
87
+
88
+ self.neck = nn.Sequential(
89
+ nn.Conv2d(
90
+ embed_dim,
91
+ out_chans,
92
+ kernel_size=1,
93
+ bias=False,
94
+ ),
95
+ LayerNorm2d(out_chans),
96
+ nn.Conv2d(
97
+ out_chans,
98
+ out_chans,
99
+ kernel_size=3,
100
+ padding=1,
101
+ bias=False,
102
+ ),
103
+ LayerNorm2d(out_chans),
104
+ )
105
+
106
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
107
+ x = self.patch_embed(x)
108
+ if self.pos_embed is not None:
109
+ x = x + self.pos_embed
110
+
111
+ for blk in self.blocks:
112
+ x = blk(x)
113
+
114
+ x = self.neck(x.permute(0, 3, 1, 2))
115
+
116
+ return x
117
+
118
+
119
+ class Block(nn.Module):
120
+ """Transformer blocks with support of window attention and residual propagation blocks"""
121
+
122
+ def __init__(
123
+ self,
124
+ dim: int,
125
+ num_heads: int,
126
+ mlp_ratio: float = 4.0,
127
+ qkv_bias: bool = True,
128
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
129
+ act_layer: Type[nn.Module] = nn.GELU,
130
+ use_rel_pos: bool = False,
131
+ rel_pos_zero_init: bool = True,
132
+ window_size: int = 0,
133
+ input_size: Optional[Tuple[int, int]] = None,
134
+ ) -> None:
135
+ """
136
+ Args:
137
+ dim (int): Number of input channels.
138
+ num_heads (int): Number of attention heads in each ViT block.
139
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
140
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
141
+ norm_layer (nn.Module): Normalization layer.
142
+ act_layer (nn.Module): Activation layer.
143
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
144
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
145
+ window_size (int): Window size for window attention blocks. If it equals 0, then
146
+ use global attention.
147
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
148
+ positional parameter size.
149
+ """
150
+ super().__init__()
151
+ self.norm1 = norm_layer(dim)
152
+ self.attn = Attention(
153
+ dim,
154
+ num_heads=num_heads,
155
+ qkv_bias=qkv_bias,
156
+ use_rel_pos=use_rel_pos,
157
+ rel_pos_zero_init=rel_pos_zero_init,
158
+ input_size=input_size if window_size == 0 else (window_size, window_size),
159
+ )
160
+
161
+ self.norm2 = norm_layer(dim)
162
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
163
+
164
+ self.window_size = window_size
165
+
166
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
167
+ shortcut = x
168
+ x = self.norm1(x)
169
+ # Window partition
170
+ if self.window_size > 0:
171
+ H, W = x.shape[1], x.shape[2]
172
+ x, pad_hw = window_partition(x, self.window_size)
173
+
174
+ x = self.attn(x)
175
+ # Reverse window partition
176
+ if self.window_size > 0:
177
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
178
+
179
+ x = shortcut + x
180
+ x = x + self.mlp(self.norm2(x))
181
+
182
+ return x
183
+
184
+
185
+ class Attention(nn.Module):
186
+ """Multi-head Attention block with relative position embeddings."""
187
+
188
+ def __init__(
189
+ self,
190
+ dim: int,
191
+ num_heads: int = 8,
192
+ qkv_bias: bool = True,
193
+ use_rel_pos: bool = False,
194
+ rel_pos_zero_init: bool = True,
195
+ input_size: Optional[Tuple[int, int]] = None,
196
+ ) -> None:
197
+ """
198
+ Args:
199
+ dim (int): Number of input channels.
200
+ num_heads (int): Number of attention heads.
201
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
202
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
203
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
204
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
205
+ positional parameter size.
206
+ """
207
+ super().__init__()
208
+ self.num_heads = num_heads
209
+ head_dim = dim // num_heads
210
+ self.scale = head_dim**-0.5
211
+
212
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
213
+ self.proj = nn.Linear(dim, dim)
214
+
215
+ self.use_rel_pos = use_rel_pos
216
+ if self.use_rel_pos:
217
+ assert (
218
+ input_size is not None
219
+ ), "Input size must be provided if using relative positional encoding."
220
+ # initialize relative positional embeddings
221
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
222
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
223
+
224
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
225
+ B, H, W, _ = x.shape
226
+ # qkv with shape (3, B, nHead, H * W, C)
227
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
228
+ # q, k, v with shape (B * nHead, H * W, C)
229
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
230
+
231
+ attn = (q * self.scale) @ k.transpose(-2, -1)
232
+
233
+ if self.use_rel_pos:
234
+ attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
235
+
236
+ attn = attn.softmax(dim=-1)
237
+ x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
238
+ x = self.proj(x)
239
+
240
+ return x
241
+
242
+
243
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
244
+ """
245
+ Partition into non-overlapping windows with padding if needed.
246
+ Args:
247
+ x (tensor): input tokens with [B, H, W, C].
248
+ window_size (int): window size.
249
+
250
+ Returns:
251
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
252
+ (Hp, Wp): padded height and width before partition
253
+ """
254
+ B, H, W, C = x.shape
255
+
256
+ pad_h = (window_size - H % window_size) % window_size
257
+ pad_w = (window_size - W % window_size) % window_size
258
+ if pad_h > 0 or pad_w > 0:
259
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
260
+ Hp, Wp = H + pad_h, W + pad_w
261
+
262
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
263
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
264
+ return windows, (Hp, Wp)
265
+
266
+
267
+ def window_unpartition(
268
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
269
+ ) -> torch.Tensor:
270
+ """
271
+ Window unpartition into original sequences and removing padding.
272
+ Args:
273
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
274
+ window_size (int): window size.
275
+ pad_hw (Tuple): padded height and width (Hp, Wp).
276
+ hw (Tuple): original height and width (H, W) before padding.
277
+
278
+ Returns:
279
+ x: unpartitioned sequences with [B, H, W, C].
280
+ """
281
+ Hp, Wp = pad_hw
282
+ H, W = hw
283
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
284
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
285
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
286
+
287
+ if Hp > H or Wp > W:
288
+ x = x[:, :H, :W, :].contiguous()
289
+ return x
290
+
291
+
292
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
293
+ """
294
+ Get relative positional embeddings according to the relative positions of
295
+ query and key sizes.
296
+ Args:
297
+ q_size (int): size of query q.
298
+ k_size (int): size of key k.
299
+ rel_pos (Tensor): relative position embeddings (L, C).
300
+
301
+ Returns:
302
+ Extracted positional embeddings according to relative positions.
303
+ """
304
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
305
+ # Interpolate rel pos if needed.
306
+ if rel_pos.shape[0] != max_rel_dist:
307
+ # Interpolate rel pos.
308
+ rel_pos_resized = F.interpolate(
309
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
310
+ size=max_rel_dist,
311
+ mode="linear",
312
+ )
313
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
314
+ else:
315
+ rel_pos_resized = rel_pos
316
+
317
+ # Scale the coords with short length if shapes for q and k are different.
318
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
319
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
320
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
321
+
322
+ return rel_pos_resized[relative_coords.long()]
323
+
324
+
325
+ def add_decomposed_rel_pos(
326
+ attn: torch.Tensor,
327
+ q: torch.Tensor,
328
+ rel_pos_h: torch.Tensor,
329
+ rel_pos_w: torch.Tensor,
330
+ q_size: Tuple[int, int],
331
+ k_size: Tuple[int, int],
332
+ ) -> torch.Tensor:
333
+ """
334
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
335
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
336
+ Args:
337
+ attn (Tensor): attention map.
338
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
339
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
340
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
341
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
342
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
343
+
344
+ Returns:
345
+ attn (Tensor): attention map with added relative positional embeddings.
346
+ """
347
+ q_h, q_w = q_size
348
+ k_h, k_w = k_size
349
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
350
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
351
+
352
+ B, _, dim = q.shape
353
+ r_q = q.reshape(B, q_h, q_w, dim)
354
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
355
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
356
+
357
+ attn = (
358
+ attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
359
+ ).view(B, q_h * q_w, k_h * k_w)
360
+
361
+ return attn
362
+
363
+
364
+ class PatchEmbed(nn.Module):
365
+ """
366
+ Image to Patch Embedding.
367
+ """
368
+
369
+ def __init__(
370
+ self,
371
+ kernel_size: Tuple[int, int] = (16, 16),
372
+ stride: Tuple[int, int] = (16, 16),
373
+ padding: Tuple[int, int] = (0, 0),
374
+ in_chans: int = 3,
375
+ embed_dim: int = 768,
376
+ ) -> None:
377
+ """
378
+ Args:
379
+ kernel_size (Tuple): kernel size of the projection layer.
380
+ stride (Tuple): stride of the projection layer.
381
+ padding (Tuple): padding size of the projection layer.
382
+ in_chans (int): Number of input image channels.
383
+ embed_dim (int): Patch embedding dimension.
384
+ """
385
+ super().__init__()
386
+
387
+ self.proj = nn.Conv2d(
388
+ in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
389
+ )
390
+
391
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
392
+ x = self.proj(x)
393
+ # B C H W -> B H W C
394
+ x = x.permute(0, 2, 3, 1)
395
+ return x
per_segment_anything/modeling/mask_decoder.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+ from typing import List, Tuple, Type
12
+
13
+ from .common import LayerNorm2d
14
+
15
+
16
+ class MaskDecoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ *,
20
+ transformer_dim: int,
21
+ transformer: nn.Module,
22
+ num_multimask_outputs: int = 3,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ iou_head_depth: int = 3,
25
+ iou_head_hidden_dim: int = 256,
26
+ ) -> None:
27
+ """
28
+ Predicts masks given an image and prompt embeddings, using a
29
+ transformer architecture.
30
+
31
+ Arguments:
32
+ transformer_dim (int): the channel dimension of the transformer
33
+ transformer (nn.Module): the transformer used to predict masks
34
+ num_multimask_outputs (int): the number of masks to predict
35
+ when disambiguating masks
36
+ activation (nn.Module): the type of activation to use when
37
+ upscaling masks
38
+ iou_head_depth (int): the depth of the MLP used to predict
39
+ mask quality
40
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
41
+ used to predict mask quality
42
+ """
43
+ super().__init__()
44
+ self.transformer_dim = transformer_dim
45
+ self.transformer = transformer
46
+
47
+ self.num_multimask_outputs = num_multimask_outputs
48
+
49
+ self.iou_token = nn.Embedding(1, transformer_dim)
50
+ self.num_mask_tokens = num_multimask_outputs + 1
51
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
52
+
53
+ self.output_upscaling = nn.Sequential(
54
+ nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
55
+ LayerNorm2d(transformer_dim // 4),
56
+ activation(),
57
+ nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
58
+ activation(),
59
+ )
60
+ self.output_hypernetworks_mlps = nn.ModuleList(
61
+ [
62
+ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
63
+ for i in range(self.num_mask_tokens)
64
+ ]
65
+ )
66
+
67
+ self.iou_prediction_head = MLP(
68
+ transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
69
+ )
70
+
71
+ def forward(
72
+ self,
73
+ image_embeddings: torch.Tensor,
74
+ image_pe: torch.Tensor,
75
+ sparse_prompt_embeddings: torch.Tensor,
76
+ dense_prompt_embeddings: torch.Tensor,
77
+ multimask_output: bool,
78
+ attn_sim=None,
79
+ target_embedding=None
80
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
81
+ """
82
+ Predict masks given image and prompt embeddings.
83
+
84
+ Arguments:
85
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
86
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
87
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
88
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
89
+ multimask_output (bool): Whether to return multiple masks or a single
90
+ mask.
91
+
92
+ Returns:
93
+ torch.Tensor: batched predicted masks
94
+ torch.Tensor: batched predictions of mask quality
95
+ """
96
+ masks, iou_pred = self.predict_masks(
97
+ image_embeddings=image_embeddings,
98
+ image_pe=image_pe,
99
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
100
+ dense_prompt_embeddings=dense_prompt_embeddings,
101
+ attn_sim=attn_sim,
102
+ target_embedding=target_embedding
103
+ )
104
+
105
+ # Select the correct mask or masks for output
106
+ if multimask_output:
107
+ mask_slice = slice(1, None)
108
+ else:
109
+ mask_slice = slice(0, 1)
110
+ masks = masks[:, mask_slice, :, :]
111
+ iou_pred = iou_pred[:, mask_slice]
112
+
113
+ # Prepare output
114
+ return masks, iou_pred
115
+
116
+ def predict_masks(
117
+ self,
118
+ image_embeddings: torch.Tensor,
119
+ image_pe: torch.Tensor,
120
+ sparse_prompt_embeddings: torch.Tensor,
121
+ dense_prompt_embeddings: torch.Tensor,
122
+ attn_sim=None,
123
+ target_embedding=None
124
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
125
+ """Predicts masks. See 'forward' for more details."""
126
+ # Concatenate output tokens
127
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
128
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
129
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
130
+
131
+ # Expand per-image data in batch direction to be per-mask
132
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
133
+ src = src + dense_prompt_embeddings
134
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
135
+ b, c, h, w = src.shape
136
+
137
+ # Run the transformer
138
+ hs, src = self.transformer(src, pos_src, tokens, attn_sim, target_embedding)
139
+ iou_token_out = hs[:, 0, :]
140
+ mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
141
+
142
+ # Upscale mask embeddings and predict masks using the mask tokens
143
+ src = src.transpose(1, 2).view(b, c, h, w)
144
+ upscaled_embedding = self.output_upscaling(src)
145
+ hyper_in_list: List[torch.Tensor] = []
146
+ for i in range(self.num_mask_tokens):
147
+ hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
148
+ hyper_in = torch.stack(hyper_in_list, dim=1)
149
+ b, c, h, w = upscaled_embedding.shape
150
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
151
+
152
+ # Generate mask quality predictions
153
+ iou_pred = self.iou_prediction_head(iou_token_out)
154
+
155
+ return masks, iou_pred
156
+
157
+
158
+ # Lightly adapted from
159
+ # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
160
+ class MLP(nn.Module):
161
+ def __init__(
162
+ self,
163
+ input_dim: int,
164
+ hidden_dim: int,
165
+ output_dim: int,
166
+ num_layers: int,
167
+ sigmoid_output: bool = False,
168
+ ) -> None:
169
+ super().__init__()
170
+ self.num_layers = num_layers
171
+ h = [hidden_dim] * (num_layers - 1)
172
+ self.layers = nn.ModuleList(
173
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
174
+ )
175
+ self.sigmoid_output = sigmoid_output
176
+
177
+ def forward(self, x):
178
+ for i, layer in enumerate(self.layers):
179
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
180
+ if self.sigmoid_output:
181
+ x = F.sigmoid(x)
182
+ return x
per_segment_anything/modeling/prompt_encoder.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torch import nn
10
+
11
+ from typing import Any, Optional, Tuple, Type
12
+
13
+ from .common import LayerNorm2d
14
+
15
+
16
+ class PromptEncoder(nn.Module):
17
+ def __init__(
18
+ self,
19
+ embed_dim: int,
20
+ image_embedding_size: Tuple[int, int],
21
+ input_image_size: Tuple[int, int],
22
+ mask_in_chans: int,
23
+ activation: Type[nn.Module] = nn.GELU,
24
+ ) -> None:
25
+ """
26
+ Encodes prompts for input to SAM's mask decoder.
27
+
28
+ Arguments:
29
+ embed_dim (int): The prompts' embedding dimension
30
+ image_embedding_size (tuple(int, int)): The spatial size of the
31
+ image embedding, as (H, W).
32
+ input_image_size (int): The padded size of the image as input
33
+ to the image encoder, as (H, W).
34
+ mask_in_chans (int): The number of hidden channels used for
35
+ encoding input masks.
36
+ activation (nn.Module): The activation to use when encoding
37
+ input masks.
38
+ """
39
+ super().__init__()
40
+ self.embed_dim = embed_dim
41
+ self.input_image_size = input_image_size
42
+ self.image_embedding_size = image_embedding_size
43
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
44
+
45
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
46
+ point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
47
+ self.point_embeddings = nn.ModuleList(point_embeddings)
48
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
49
+
50
+ self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
51
+ self.mask_downscaling = nn.Sequential(
52
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
53
+ LayerNorm2d(mask_in_chans // 4),
54
+ activation(),
55
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
56
+ LayerNorm2d(mask_in_chans),
57
+ activation(),
58
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
59
+ )
60
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
61
+
62
+ def get_dense_pe(self) -> torch.Tensor:
63
+ """
64
+ Returns the positional encoding used to encode point prompts,
65
+ applied to a dense set of points the shape of the image encoding.
66
+
67
+ Returns:
68
+ torch.Tensor: Positional encoding with shape
69
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
70
+ """
71
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
72
+
73
+ def _embed_points(
74
+ self,
75
+ points: torch.Tensor,
76
+ labels: torch.Tensor,
77
+ pad: bool,
78
+ ) -> torch.Tensor:
79
+ """Embeds point prompts."""
80
+ points = points + 0.5 # Shift to center of pixel
81
+ if pad:
82
+ padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
83
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
84
+ points = torch.cat([points, padding_point], dim=1)
85
+ labels = torch.cat([labels, padding_label], dim=1)
86
+ point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
87
+ point_embedding[labels == -1] = 0.0
88
+ point_embedding[labels == -1] += self.not_a_point_embed.weight
89
+ point_embedding[labels == 0] += self.point_embeddings[0].weight
90
+ point_embedding[labels == 1] += self.point_embeddings[1].weight
91
+ return point_embedding
92
+
93
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
94
+ """Embeds box prompts."""
95
+ boxes = boxes + 0.5 # Shift to center of pixel
96
+ coords = boxes.reshape(-1, 2, 2)
97
+ corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
98
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
99
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
100
+ return corner_embedding
101
+
102
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
103
+ """Embeds mask inputs."""
104
+ mask_embedding = self.mask_downscaling(masks)
105
+ return mask_embedding
106
+
107
+ def _get_batch_size(
108
+ self,
109
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
110
+ boxes: Optional[torch.Tensor],
111
+ masks: Optional[torch.Tensor],
112
+ ) -> int:
113
+ """
114
+ Gets the batch size of the output given the batch size of the input prompts.
115
+ """
116
+ if points is not None:
117
+ return points[0].shape[0]
118
+ elif boxes is not None:
119
+ return boxes.shape[0]
120
+ elif masks is not None:
121
+ return masks.shape[0]
122
+ else:
123
+ return 1
124
+
125
+ def _get_device(self) -> torch.device:
126
+ return self.point_embeddings[0].weight.device
127
+
128
+ def forward(
129
+ self,
130
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
131
+ boxes: Optional[torch.Tensor],
132
+ masks: Optional[torch.Tensor],
133
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
134
+ """
135
+ Embeds different types of prompts, returning both sparse and dense
136
+ embeddings.
137
+
138
+ Arguments:
139
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
140
+ and labels to embed.
141
+ boxes (torch.Tensor or none): boxes to embed
142
+ masks (torch.Tensor or none): masks to embed
143
+
144
+ Returns:
145
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
146
+ BxNx(embed_dim), where N is determined by the number of input points
147
+ and boxes.
148
+ torch.Tensor: dense embeddings for the masks, in the shape
149
+ Bx(embed_dim)x(embed_H)x(embed_W)
150
+ """
151
+ bs = self._get_batch_size(points, boxes, masks)
152
+ sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
153
+ if points is not None:
154
+ coords, labels = points
155
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
156
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
157
+ if boxes is not None:
158
+ box_embeddings = self._embed_boxes(boxes)
159
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
160
+
161
+ if masks is not None:
162
+ dense_embeddings = self._embed_masks(masks)
163
+ else:
164
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
165
+ bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
166
+ )
167
+
168
+ return sparse_embeddings, dense_embeddings
169
+
170
+
171
+ class PositionEmbeddingRandom(nn.Module):
172
+ """
173
+ Positional encoding using random spatial frequencies.
174
+ """
175
+
176
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
177
+ super().__init__()
178
+ if scale is None or scale <= 0.0:
179
+ scale = 1.0
180
+ self.register_buffer(
181
+ "positional_encoding_gaussian_matrix",
182
+ scale * torch.randn((2, num_pos_feats)),
183
+ )
184
+
185
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
186
+ """Positionally encode points that are normalized to [0,1]."""
187
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
188
+ coords = 2 * coords - 1
189
+ coords = coords @ self.positional_encoding_gaussian_matrix
190
+ coords = 2 * np.pi * coords
191
+ # outputs d_1 x ... x d_n x C shape
192
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
193
+
194
+ def forward(self, size: Tuple[int, int]) -> torch.Tensor:
195
+ """Generate positional encoding for a grid of the specified size."""
196
+ h, w = size
197
+ device: Any = self.positional_encoding_gaussian_matrix.device
198
+ grid = torch.ones((h, w), device=device, dtype=torch.float32)
199
+ y_embed = grid.cumsum(dim=0) - 0.5
200
+ x_embed = grid.cumsum(dim=1) - 0.5
201
+ y_embed = y_embed / h
202
+ x_embed = x_embed / w
203
+
204
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
205
+ return pe.permute(2, 0, 1) # C x H x W
206
+
207
+ def forward_with_coords(
208
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
209
+ ) -> torch.Tensor:
210
+ """Positionally encode points that are not normalized to [0,1]."""
211
+ coords = coords_input.clone()
212
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
213
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
214
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
per_segment_anything/modeling/sam.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ from torch import nn
9
+ from torch.nn import functional as F
10
+
11
+ from typing import Any, Dict, List, Tuple, Union
12
+ from .tiny_vit_sam import TinyViT
13
+ from .image_encoder import ImageEncoderViT
14
+ from .mask_decoder import MaskDecoder
15
+ from .prompt_encoder import PromptEncoder
16
+
17
+
18
+ class Sam(nn.Module):
19
+ mask_threshold: float = 0.0
20
+ image_format: str = "RGB"
21
+
22
+ def __init__(
23
+ self,
24
+ image_encoder: Union[ImageEncoderViT, TinyViT],
25
+ prompt_encoder: PromptEncoder,
26
+ mask_decoder: MaskDecoder,
27
+ pixel_mean: List[float] = [123.675, 116.28, 103.53],
28
+ pixel_std: List[float] = [58.395, 57.12, 57.375],
29
+ ) -> None:
30
+ """
31
+ SAM predicts object masks from an image and input prompts.
32
+
33
+ Arguments:
34
+ image_encoder (ImageEncoderViT): The backbone used to encode the
35
+ image into image embeddings that allow for efficient mask prediction.
36
+ prompt_encoder (PromptEncoder): Encodes various types of input prompts.
37
+ mask_decoder (MaskDecoder): Predicts masks from the image embeddings
38
+ and encoded prompts.
39
+ pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
40
+ pixel_std (list(float)): Std values for normalizing pixels in the input image.
41
+ """
42
+ super().__init__()
43
+ self.image_encoder = image_encoder
44
+ self.prompt_encoder = prompt_encoder
45
+ self.mask_decoder = mask_decoder
46
+ self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
47
+ self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
48
+
49
+ @property
50
+ def device(self) -> Any:
51
+ return self.pixel_mean.device
52
+
53
+ @torch.no_grad()
54
+ def forward(
55
+ self,
56
+ batched_input: List[Dict[str, Any]],
57
+ multimask_output: bool,
58
+ ) -> List[Dict[str, torch.Tensor]]:
59
+ """
60
+ Predicts masks end-to-end from provided images and prompts.
61
+ If prompts are not known in advance, using SamPredictor is
62
+ recommended over calling the model directly.
63
+
64
+ Arguments:
65
+ batched_input (list(dict)): A list over input images, each a
66
+ dictionary with the following keys. A prompt key can be
67
+ excluded if it is not present.
68
+ 'image': The image as a torch tensor in 3xHxW format,
69
+ already transformed for input to the model.
70
+ 'original_size': (tuple(int, int)) The original size of
71
+ the image before transformation, as (H, W).
72
+ 'point_coords': (torch.Tensor) Batched point prompts for
73
+ this image, with shape BxNx2. Already transformed to the
74
+ input frame of the model.
75
+ 'point_labels': (torch.Tensor) Batched labels for point prompts,
76
+ with shape BxN.
77
+ 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
78
+ Already transformed to the input frame of the model.
79
+ 'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
80
+ in the form Bx1xHxW.
81
+ multimask_output (bool): Whether the model should predict multiple
82
+ disambiguating masks, or return a single mask.
83
+
84
+ Returns:
85
+ (list(dict)): A list over input images, where each element is
86
+ as dictionary with the following keys.
87
+ 'masks': (torch.Tensor) Batched binary mask predictions,
88
+ with shape BxCxHxW, where B is the number of input prompts,
89
+ C is determined by multimask_output, and (H, W) is the
90
+ original size of the image.
91
+ 'iou_predictions': (torch.Tensor) The model's predictions
92
+ of mask quality, in shape BxC.
93
+ 'low_res_logits': (torch.Tensor) Low resolution logits with
94
+ shape BxCxHxW, where H=W=256. Can be passed as mask input
95
+ to subsequent iterations of prediction.
96
+ """
97
+ input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
98
+ image_embeddings = self.image_encoder(input_images)
99
+
100
+ outputs = []
101
+ for image_record, curr_embedding in zip(batched_input, image_embeddings):
102
+ if "point_coords" in image_record:
103
+ points = (image_record["point_coords"], image_record["point_labels"])
104
+ else:
105
+ points = None
106
+ sparse_embeddings, dense_embeddings = self.prompt_encoder(
107
+ points=points,
108
+ boxes=image_record.get("boxes", None),
109
+ masks=image_record.get("mask_inputs", None),
110
+ )
111
+ low_res_masks, iou_predictions = self.mask_decoder(
112
+ image_embeddings=curr_embedding.unsqueeze(0),
113
+ image_pe=self.prompt_encoder.get_dense_pe(),
114
+ sparse_prompt_embeddings=sparse_embeddings,
115
+ dense_prompt_embeddings=dense_embeddings,
116
+ multimask_output=multimask_output,
117
+ )
118
+ masks = self.postprocess_masks(
119
+ low_res_masks,
120
+ input_size=image_record["image"].shape[-2:],
121
+ original_size=image_record["original_size"],
122
+ )
123
+ masks = masks > self.mask_threshold
124
+ outputs.append(
125
+ {
126
+ "masks": masks,
127
+ "iou_predictions": iou_predictions,
128
+ "low_res_logits": low_res_masks,
129
+ }
130
+ )
131
+ return outputs
132
+
133
+ def postprocess_masks(
134
+ self,
135
+ masks: torch.Tensor,
136
+ input_size: Tuple[int, ...],
137
+ original_size: Tuple[int, ...],
138
+ ) -> torch.Tensor:
139
+ """
140
+ Remove padding and upscale masks to the original image size.
141
+
142
+ Arguments:
143
+ masks (torch.Tensor): Batched masks from the mask_decoder,
144
+ in BxCxHxW format.
145
+ input_size (tuple(int, int)): The size of the image input to the
146
+ model, in (H, W) format. Used to remove padding.
147
+ original_size (tuple(int, int)): The original size of the image
148
+ before resizing for input to the model, in (H, W) format.
149
+
150
+ Returns:
151
+ (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
152
+ is given by original_size.
153
+ """
154
+ masks = F.interpolate(
155
+ masks,
156
+ (self.image_encoder.img_size, self.image_encoder.img_size),
157
+ mode="bilinear",
158
+ align_corners=False,
159
+ )
160
+ masks = masks[..., : input_size[0], : input_size[1]]
161
+ masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
162
+ return masks
163
+
164
+ def preprocess(self, x: torch.Tensor) -> torch.Tensor:
165
+ """Normalize pixel values and pad to a square input."""
166
+ # Normalize colors
167
+ x = (x - self.pixel_mean) / self.pixel_std
168
+
169
+ # Pad
170
+ h, w = x.shape[-2:]
171
+ padh = self.image_encoder.img_size - h
172
+ padw = self.image_encoder.img_size - w
173
+ x = F.pad(x, (0, padw, 0, padh))
174
+ return x
175
+
176
+ def preprocess_mask(self, x: torch.Tensor) -> torch.Tensor:
177
+ """Normalize pixel values and pad to a square input."""
178
+ # Pad
179
+ h, w = x.shape[-2:]
180
+ padh = self.image_encoder.img_size - h
181
+ padw = self.image_encoder.img_size - w
182
+ x = F.pad(x, (0, padw, 0, padh))
183
+ return x
per_segment_anything/modeling/tiny_vit_sam.py ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # TinyViT Model Architecture
3
+ # Copyright (c) 2022 Microsoft
4
+ # Adapted from LeViT and Swin Transformer
5
+ # LeViT: (https://github.com/facebookresearch/levit)
6
+ # Swin: (https://github.com/microsoft/swin-transformer)
7
+ # Build the TinyViT Model
8
+ # --------------------------------------------------------
9
+
10
+ import itertools
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint as checkpoint
15
+ from timm.models.layers import DropPath as TimmDropPath,\
16
+ to_2tuple, trunc_normal_
17
+ from timm.models.registry import register_model
18
+ from typing import Tuple
19
+
20
+
21
+ class Conv2d_BN(torch.nn.Sequential):
22
+ def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
23
+ groups=1, bn_weight_init=1):
24
+ super().__init__()
25
+ self.add_module('c', torch.nn.Conv2d(
26
+ a, b, ks, stride, pad, dilation, groups, bias=False))
27
+ bn = torch.nn.BatchNorm2d(b)
28
+ torch.nn.init.constant_(bn.weight, bn_weight_init)
29
+ torch.nn.init.constant_(bn.bias, 0)
30
+ self.add_module('bn', bn)
31
+
32
+ @torch.no_grad()
33
+ def fuse(self):
34
+ c, bn = self._modules.values()
35
+ w = bn.weight / (bn.running_var + bn.eps)**0.5
36
+ w = c.weight * w[:, None, None, None]
37
+ b = bn.bias - bn.running_mean * bn.weight / \
38
+ (bn.running_var + bn.eps)**0.5
39
+ m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
40
+ 0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
41
+ m.weight.data.copy_(w)
42
+ m.bias.data.copy_(b)
43
+ return m
44
+
45
+
46
+ class DropPath(TimmDropPath):
47
+ def __init__(self, drop_prob=None):
48
+ super().__init__(drop_prob=drop_prob)
49
+ self.drop_prob = drop_prob
50
+
51
+ def __repr__(self):
52
+ msg = super().__repr__()
53
+ msg += f'(drop_prob={self.drop_prob})'
54
+ return msg
55
+
56
+
57
+ class PatchEmbed(nn.Module):
58
+ def __init__(self, in_chans, embed_dim, resolution, activation):
59
+ super().__init__()
60
+ img_size: Tuple[int, int] = to_2tuple(resolution)
61
+ self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
62
+ self.num_patches = self.patches_resolution[0] * \
63
+ self.patches_resolution[1]
64
+ self.in_chans = in_chans
65
+ self.embed_dim = embed_dim
66
+ n = embed_dim
67
+ self.seq = nn.Sequential(
68
+ Conv2d_BN(in_chans, n // 2, 3, 2, 1),
69
+ activation(),
70
+ Conv2d_BN(n // 2, n, 3, 2, 1),
71
+ )
72
+
73
+ def forward(self, x):
74
+ return self.seq(x)
75
+
76
+
77
+ class MBConv(nn.Module):
78
+ def __init__(self, in_chans, out_chans, expand_ratio,
79
+ activation, drop_path):
80
+ super().__init__()
81
+ self.in_chans = in_chans
82
+ self.hidden_chans = int(in_chans * expand_ratio)
83
+ self.out_chans = out_chans
84
+
85
+ self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
86
+ self.act1 = activation()
87
+
88
+ self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans,
89
+ ks=3, stride=1, pad=1, groups=self.hidden_chans)
90
+ self.act2 = activation()
91
+
92
+ self.conv3 = Conv2d_BN(
93
+ self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
94
+ self.act3 = activation()
95
+
96
+ self.drop_path = DropPath(
97
+ drop_path) if drop_path > 0. else nn.Identity()
98
+
99
+ def forward(self, x):
100
+ shortcut = x
101
+
102
+ x = self.conv1(x)
103
+ x = self.act1(x)
104
+
105
+ x = self.conv2(x)
106
+ x = self.act2(x)
107
+
108
+ x = self.conv3(x)
109
+
110
+ x = self.drop_path(x)
111
+
112
+ x += shortcut
113
+ x = self.act3(x)
114
+
115
+ return x
116
+
117
+
118
+ class PatchMerging(nn.Module):
119
+ def __init__(self, input_resolution, dim, out_dim, activation):
120
+ super().__init__()
121
+
122
+ self.input_resolution = input_resolution
123
+ self.dim = dim
124
+ self.out_dim = out_dim
125
+ self.act = activation()
126
+ self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
127
+ stride_c=2
128
+ if(out_dim==320 or out_dim==448 or out_dim==576):
129
+ stride_c=1
130
+ self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
131
+ self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
132
+
133
+ def forward(self, x):
134
+ if x.ndim == 3:
135
+ H, W = self.input_resolution
136
+ B = len(x)
137
+ # (B, C, H, W)
138
+ x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
139
+
140
+ x = self.conv1(x)
141
+ x = self.act(x)
142
+
143
+ x = self.conv2(x)
144
+ x = self.act(x)
145
+ x = self.conv3(x)
146
+ x = x.flatten(2).transpose(1, 2)
147
+ return x
148
+
149
+
150
+ class ConvLayer(nn.Module):
151
+ def __init__(self, dim, input_resolution, depth,
152
+ activation,
153
+ drop_path=0., downsample=None, use_checkpoint=False,
154
+ out_dim=None,
155
+ conv_expand_ratio=4.,
156
+ ):
157
+
158
+ super().__init__()
159
+ self.dim = dim
160
+ self.input_resolution = input_resolution
161
+ self.depth = depth
162
+ self.use_checkpoint = use_checkpoint
163
+
164
+ # build blocks
165
+ self.blocks = nn.ModuleList([
166
+ MBConv(dim, dim, conv_expand_ratio, activation,
167
+ drop_path[i] if isinstance(drop_path, list) else drop_path,
168
+ )
169
+ for i in range(depth)])
170
+
171
+ # patch merging layer
172
+ if downsample is not None:
173
+ self.downsample = downsample(
174
+ input_resolution, dim=dim, out_dim=out_dim, activation=activation)
175
+ else:
176
+ self.downsample = None
177
+
178
+ def forward(self, x):
179
+ for blk in self.blocks:
180
+ if self.use_checkpoint:
181
+ x = checkpoint.checkpoint(blk, x)
182
+ else:
183
+ x = blk(x)
184
+ if self.downsample is not None:
185
+ x = self.downsample(x)
186
+ return x
187
+
188
+
189
+ class Mlp(nn.Module):
190
+ def __init__(self, in_features, hidden_features=None,
191
+ out_features=None, act_layer=nn.GELU, drop=0.):
192
+ super().__init__()
193
+ out_features = out_features or in_features
194
+ hidden_features = hidden_features or in_features
195
+ self.norm = nn.LayerNorm(in_features)
196
+ self.fc1 = nn.Linear(in_features, hidden_features)
197
+ self.fc2 = nn.Linear(hidden_features, out_features)
198
+ self.act = act_layer()
199
+ self.drop = nn.Dropout(drop)
200
+
201
+ def forward(self, x):
202
+ x = self.norm(x)
203
+
204
+ x = self.fc1(x)
205
+ x = self.act(x)
206
+ x = self.drop(x)
207
+ x = self.fc2(x)
208
+ x = self.drop(x)
209
+ return x
210
+
211
+
212
+ class Attention(torch.nn.Module):
213
+ def __init__(self, dim, key_dim, num_heads=8,
214
+ attn_ratio=4,
215
+ resolution=(14, 14),
216
+ ):
217
+ super().__init__()
218
+ # (h, w)
219
+ assert isinstance(resolution, tuple) and len(resolution) == 2
220
+ self.num_heads = num_heads
221
+ self.scale = key_dim ** -0.5
222
+ self.key_dim = key_dim
223
+ self.nh_kd = nh_kd = key_dim * num_heads
224
+ self.d = int(attn_ratio * key_dim)
225
+ self.dh = int(attn_ratio * key_dim) * num_heads
226
+ self.attn_ratio = attn_ratio
227
+ h = self.dh + nh_kd * 2
228
+
229
+ self.norm = nn.LayerNorm(dim)
230
+ self.qkv = nn.Linear(dim, h)
231
+ self.proj = nn.Linear(self.dh, dim)
232
+
233
+ points = list(itertools.product(
234
+ range(resolution[0]), range(resolution[1])))
235
+ N = len(points)
236
+ attention_offsets = {}
237
+ idxs = []
238
+ for p1 in points:
239
+ for p2 in points:
240
+ offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
241
+ if offset not in attention_offsets:
242
+ attention_offsets[offset] = len(attention_offsets)
243
+ idxs.append(attention_offsets[offset])
244
+ self.attention_biases = torch.nn.Parameter(
245
+ torch.zeros(num_heads, len(attention_offsets)))
246
+ self.register_buffer('attention_bias_idxs',
247
+ torch.LongTensor(idxs).view(N, N),
248
+ persistent=False)
249
+
250
+ @torch.no_grad()
251
+ def train(self, mode=True):
252
+ super().train(mode)
253
+ if mode and hasattr(self, 'ab'):
254
+ del self.ab
255
+ else:
256
+ self.ab = self.attention_biases[:, self.attention_bias_idxs]
257
+
258
+ def forward(self, x): # x (B,N,C)
259
+ B, N, _ = x.shape
260
+
261
+ # Normalization
262
+ x = self.norm(x)
263
+
264
+ qkv = self.qkv(x)
265
+ # (B, N, num_heads, d)
266
+ q, k, v = qkv.view(B, N, self.num_heads, -
267
+ 1).split([self.key_dim, self.key_dim, self.d], dim=3)
268
+ # (B, num_heads, N, d)
269
+ q = q.permute(0, 2, 1, 3)
270
+ k = k.permute(0, 2, 1, 3)
271
+ v = v.permute(0, 2, 1, 3)
272
+
273
+ attn = (
274
+ (q @ k.transpose(-2, -1)) * self.scale
275
+ +
276
+ (self.attention_biases[:, self.attention_bias_idxs]
277
+ if self.training else self.ab)
278
+ )
279
+ attn = attn.softmax(dim=-1)
280
+ x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
281
+ x = self.proj(x)
282
+ return x
283
+
284
+
285
+ class TinyViTBlock(nn.Module):
286
+ r""" TinyViT Block.
287
+
288
+ Args:
289
+ dim (int): Number of input channels.
290
+ input_resolution (tuple[int, int]): Input resulotion.
291
+ num_heads (int): Number of attention heads.
292
+ window_size (int): Window size.
293
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
294
+ drop (float, optional): Dropout rate. Default: 0.0
295
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
296
+ local_conv_size (int): the kernel size of the convolution between
297
+ Attention and MLP. Default: 3
298
+ activation: the activation function. Default: nn.GELU
299
+ """
300
+
301
+ def __init__(self, dim, input_resolution, num_heads, window_size=7,
302
+ mlp_ratio=4., drop=0., drop_path=0.,
303
+ local_conv_size=3,
304
+ activation=nn.GELU,
305
+ ):
306
+ super().__init__()
307
+ self.dim = dim
308
+ self.input_resolution = input_resolution
309
+ self.num_heads = num_heads
310
+ assert window_size > 0, 'window_size must be greater than 0'
311
+ self.window_size = window_size
312
+ self.mlp_ratio = mlp_ratio
313
+
314
+ self.drop_path = DropPath(
315
+ drop_path) if drop_path > 0. else nn.Identity()
316
+
317
+ assert dim % num_heads == 0, 'dim must be divisible by num_heads'
318
+ head_dim = dim // num_heads
319
+
320
+ window_resolution = (window_size, window_size)
321
+ self.attn = Attention(dim, head_dim, num_heads,
322
+ attn_ratio=1, resolution=window_resolution)
323
+
324
+ mlp_hidden_dim = int(dim * mlp_ratio)
325
+ mlp_activation = activation
326
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
327
+ act_layer=mlp_activation, drop=drop)
328
+
329
+ pad = local_conv_size // 2
330
+ self.local_conv = Conv2d_BN(
331
+ dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
332
+
333
+ def forward(self, x):
334
+ H, W = self.input_resolution
335
+ B, L, C = x.shape
336
+ assert L == H * W, "input feature has wrong size"
337
+ res_x = x
338
+ if H == self.window_size and W == self.window_size:
339
+ x = self.attn(x)
340
+ else:
341
+ x = x.view(B, H, W, C)
342
+ pad_b = (self.window_size - H %
343
+ self.window_size) % self.window_size
344
+ pad_r = (self.window_size - W %
345
+ self.window_size) % self.window_size
346
+ padding = pad_b > 0 or pad_r > 0
347
+
348
+ if padding:
349
+ x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
350
+
351
+ pH, pW = H + pad_b, W + pad_r
352
+ nH = pH // self.window_size
353
+ nW = pW // self.window_size
354
+ # window partition
355
+ x = x.view(B, nH, self.window_size, nW, self.window_size, C).transpose(2, 3).reshape(
356
+ B * nH * nW, self.window_size * self.window_size, C)
357
+ x = self.attn(x)
358
+ # window reverse
359
+ x = x.view(B, nH, nW, self.window_size, self.window_size,
360
+ C).transpose(2, 3).reshape(B, pH, pW, C)
361
+
362
+ if padding:
363
+ x = x[:, :H, :W].contiguous()
364
+
365
+ x = x.view(B, L, C)
366
+
367
+ x = res_x + self.drop_path(x)
368
+
369
+ x = x.transpose(1, 2).reshape(B, C, H, W)
370
+ x = self.local_conv(x)
371
+ x = x.view(B, C, L).transpose(1, 2)
372
+
373
+ x = x + self.drop_path(self.mlp(x))
374
+ return x
375
+
376
+ def extra_repr(self) -> str:
377
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
378
+ f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
379
+
380
+
381
+ class BasicLayer(nn.Module):
382
+ """ A basic TinyViT layer for one stage.
383
+
384
+ Args:
385
+ dim (int): Number of input channels.
386
+ input_resolution (tuple[int]): Input resolution.
387
+ depth (int): Number of blocks.
388
+ num_heads (int): Number of attention heads.
389
+ window_size (int): Local window size.
390
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
391
+ drop (float, optional): Dropout rate. Default: 0.0
392
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
393
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
394
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
395
+ local_conv_size: the kernel size of the depthwise convolution between attention and MLP. Default: 3
396
+ activation: the activation function. Default: nn.GELU
397
+ out_dim: the output dimension of the layer. Default: dim
398
+ """
399
+
400
+ def __init__(self, dim, input_resolution, depth, num_heads, window_size,
401
+ mlp_ratio=4., drop=0.,
402
+ drop_path=0., downsample=None, use_checkpoint=False,
403
+ local_conv_size=3,
404
+ activation=nn.GELU,
405
+ out_dim=None,
406
+ ):
407
+
408
+ super().__init__()
409
+ self.dim = dim
410
+ self.input_resolution = input_resolution
411
+ self.depth = depth
412
+ self.use_checkpoint = use_checkpoint
413
+
414
+ # build blocks
415
+ self.blocks = nn.ModuleList([
416
+ TinyViTBlock(dim=dim, input_resolution=input_resolution,
417
+ num_heads=num_heads, window_size=window_size,
418
+ mlp_ratio=mlp_ratio,
419
+ drop=drop,
420
+ drop_path=drop_path[i] if isinstance(
421
+ drop_path, list) else drop_path,
422
+ local_conv_size=local_conv_size,
423
+ activation=activation,
424
+ )
425
+ for i in range(depth)])
426
+
427
+ # patch merging layer
428
+ if downsample is not None:
429
+ self.downsample = downsample(
430
+ input_resolution, dim=dim, out_dim=out_dim, activation=activation)
431
+ else:
432
+ self.downsample = None
433
+
434
+ def forward(self, x):
435
+ for blk in self.blocks:
436
+ if self.use_checkpoint:
437
+ x = checkpoint.checkpoint(blk, x)
438
+ else:
439
+ x = blk(x)
440
+ if self.downsample is not None:
441
+ x = self.downsample(x)
442
+ return x
443
+
444
+ def extra_repr(self) -> str:
445
+ return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
446
+
447
+ class LayerNorm2d(nn.Module):
448
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
449
+ super().__init__()
450
+ self.weight = nn.Parameter(torch.ones(num_channels))
451
+ self.bias = nn.Parameter(torch.zeros(num_channels))
452
+ self.eps = eps
453
+
454
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
455
+ u = x.mean(1, keepdim=True)
456
+ s = (x - u).pow(2).mean(1, keepdim=True)
457
+ x = (x - u) / torch.sqrt(s + self.eps)
458
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
459
+ return x
460
+ class TinyViT(nn.Module):
461
+ def __init__(self, img_size=224, in_chans=3, num_classes=1000,
462
+ embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2],
463
+ num_heads=[3, 6, 12, 24],
464
+ window_sizes=[7, 7, 14, 7],
465
+ mlp_ratio=4.,
466
+ drop_rate=0.,
467
+ drop_path_rate=0.1,
468
+ use_checkpoint=False,
469
+ mbconv_expand_ratio=4.0,
470
+ local_conv_size=3,
471
+ layer_lr_decay=1.0,
472
+ ):
473
+ super().__init__()
474
+ self.img_size=img_size
475
+ self.num_classes = num_classes
476
+ self.depths = depths
477
+ self.num_layers = len(depths)
478
+ self.mlp_ratio = mlp_ratio
479
+
480
+ activation = nn.GELU
481
+
482
+ self.patch_embed = PatchEmbed(in_chans=in_chans,
483
+ embed_dim=embed_dims[0],
484
+ resolution=img_size,
485
+ activation=activation)
486
+
487
+ patches_resolution = self.patch_embed.patches_resolution
488
+ self.patches_resolution = patches_resolution
489
+
490
+ # stochastic depth
491
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate,
492
+ sum(depths))] # stochastic depth decay rule
493
+
494
+ # build layers
495
+ self.layers = nn.ModuleList()
496
+ for i_layer in range(self.num_layers):
497
+ kwargs = dict(dim=embed_dims[i_layer],
498
+ input_resolution=(patches_resolution[0] // (2 ** (i_layer-1 if i_layer == 3 else i_layer)),
499
+ patches_resolution[1] // (2 ** (i_layer-1 if i_layer == 3 else i_layer))),
500
+ # input_resolution=(patches_resolution[0] // (2 ** i_layer),
501
+ # patches_resolution[1] // (2 ** i_layer)),
502
+ depth=depths[i_layer],
503
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
504
+ downsample=PatchMerging if (
505
+ i_layer < self.num_layers - 1) else None,
506
+ use_checkpoint=use_checkpoint,
507
+ out_dim=embed_dims[min(
508
+ i_layer + 1, len(embed_dims) - 1)],
509
+ activation=activation,
510
+ )
511
+ if i_layer == 0:
512
+ layer = ConvLayer(
513
+ conv_expand_ratio=mbconv_expand_ratio,
514
+ **kwargs,
515
+ )
516
+ else:
517
+ layer = BasicLayer(
518
+ num_heads=num_heads[i_layer],
519
+ window_size=window_sizes[i_layer],
520
+ mlp_ratio=self.mlp_ratio,
521
+ drop=drop_rate,
522
+ local_conv_size=local_conv_size,
523
+ **kwargs)
524
+ self.layers.append(layer)
525
+
526
+ # Classifier head
527
+ self.norm_head = nn.LayerNorm(embed_dims[-1])
528
+ self.head = nn.Linear(
529
+ embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
530
+
531
+ # init weights
532
+ self.apply(self._init_weights)
533
+ self.set_layer_lr_decay(layer_lr_decay)
534
+ self.neck = nn.Sequential(
535
+ nn.Conv2d(
536
+ embed_dims[-1],
537
+ 256,
538
+ kernel_size=1,
539
+ bias=False,
540
+ ),
541
+ LayerNorm2d(256),
542
+ nn.Conv2d(
543
+ 256,
544
+ 256,
545
+ kernel_size=3,
546
+ padding=1,
547
+ bias=False,
548
+ ),
549
+ LayerNorm2d(256),
550
+ )
551
+ def set_layer_lr_decay(self, layer_lr_decay):
552
+ decay_rate = layer_lr_decay
553
+
554
+ # layers -> blocks (depth)
555
+ depth = sum(self.depths)
556
+ lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
557
+ #print("LR SCALES:", lr_scales)
558
+
559
+ def _set_lr_scale(m, scale):
560
+ for p in m.parameters():
561
+ p.lr_scale = scale
562
+
563
+ self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
564
+ i = 0
565
+ for layer in self.layers:
566
+ for block in layer.blocks:
567
+ block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
568
+ i += 1
569
+ if layer.downsample is not None:
570
+ layer.downsample.apply(
571
+ lambda x: _set_lr_scale(x, lr_scales[i - 1]))
572
+ assert i == depth
573
+ for m in [self.norm_head, self.head]:
574
+ m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
575
+
576
+ for k, p in self.named_parameters():
577
+ p.param_name = k
578
+
579
+ def _check_lr_scale(m):
580
+ for p in m.parameters():
581
+ assert hasattr(p, 'lr_scale'), p.param_name
582
+
583
+ self.apply(_check_lr_scale)
584
+
585
+ def _init_weights(self, m):
586
+ if isinstance(m, nn.Linear):
587
+ trunc_normal_(m.weight, std=.02)
588
+ if isinstance(m, nn.Linear) and m.bias is not None:
589
+ nn.init.constant_(m.bias, 0)
590
+ elif isinstance(m, nn.LayerNorm):
591
+ nn.init.constant_(m.bias, 0)
592
+ nn.init.constant_(m.weight, 1.0)
593
+
594
+ @torch.jit.ignore
595
+ def no_weight_decay_keywords(self):
596
+ return {'attention_biases'}
597
+
598
+ def forward_features(self, x):
599
+ # x: (N, C, H, W)
600
+ x = self.patch_embed(x)
601
+
602
+ x = self.layers[0](x)
603
+ start_i = 1
604
+
605
+ for i in range(start_i, len(self.layers)):
606
+ layer = self.layers[i]
607
+ x = layer(x)
608
+ B,_,C=x.size()
609
+ x = x.view(B, 64, 64, C)
610
+ x=x.permute(0, 3, 1, 2)
611
+ x=self.neck(x)
612
+ return x
613
+
614
+ def forward(self, x):
615
+ x = self.forward_features(x)
616
+ #x = self.norm_head(x)
617
+ #x = self.head(x)
618
+ return x
619
+
620
+
621
+ _checkpoint_url_format = \
622
+ 'https://github.com/wkcn/TinyViT-model-zoo/releases/download/checkpoints/{}.pth'
623
+ _provided_checkpoints = {
624
+ 'tiny_vit_5m_224': 'tiny_vit_5m_22kto1k_distill',
625
+ 'tiny_vit_11m_224': 'tiny_vit_11m_22kto1k_distill',
626
+ 'tiny_vit_21m_224': 'tiny_vit_21m_22kto1k_distill',
627
+ 'tiny_vit_21m_384': 'tiny_vit_21m_22kto1k_384_distill',
628
+ 'tiny_vit_21m_512': 'tiny_vit_21m_22kto1k_512_distill',
629
+ }
630
+
631
+
632
+ def register_tiny_vit_model(fn):
633
+ '''Register a TinyViT model
634
+ It is a wrapper of `register_model` with loading the pretrained checkpoint.
635
+ '''
636
+ def fn_wrapper(pretrained=False, **kwargs):
637
+ model = fn()
638
+ if pretrained:
639
+ model_name = fn.__name__
640
+ assert model_name in _provided_checkpoints, \
641
+ f'Sorry that the checkpoint `{model_name}` is not provided yet.'
642
+ url = _checkpoint_url_format.format(
643
+ _provided_checkpoints[model_name])
644
+ checkpoint = torch.hub.load_state_dict_from_url(
645
+ url=url,
646
+ map_location='cpu', check_hash=False,
647
+ )
648
+ model.load_state_dict(checkpoint['model'])
649
+
650
+ return model
651
+
652
+ # rename the name of fn_wrapper
653
+ fn_wrapper.__name__ = fn.__name__
654
+ return register_model(fn_wrapper)
655
+
656
+
657
+ @register_tiny_vit_model
658
+ def tiny_vit_5m_224(pretrained=False, num_classes=1000, drop_path_rate=0.0):
659
+ return TinyViT(
660
+ num_classes=num_classes,
661
+ embed_dims=[64, 128, 160, 320],
662
+ depths=[2, 2, 6, 2],
663
+ num_heads=[2, 4, 5, 10],
664
+ window_sizes=[7, 7, 14, 7],
665
+ drop_path_rate=drop_path_rate,
666
+ )
667
+
668
+
669
+ @register_tiny_vit_model
670
+ def tiny_vit_11m_224(pretrained=False, num_classes=1000, drop_path_rate=0.1):
671
+ return TinyViT(
672
+ num_classes=num_classes,
673
+ embed_dims=[64, 128, 256, 448],
674
+ depths=[2, 2, 6, 2],
675
+ num_heads=[2, 4, 8, 14],
676
+ window_sizes=[7, 7, 14, 7],
677
+ drop_path_rate=drop_path_rate,
678
+ )
679
+
680
+
681
+ @register_tiny_vit_model
682
+ def tiny_vit_21m_224(pretrained=False, num_classes=1000, drop_path_rate=0.2):
683
+ return TinyViT(
684
+ num_classes=num_classes,
685
+ embed_dims=[96, 192, 384, 576],
686
+ depths=[2, 2, 6, 2],
687
+ num_heads=[3, 6, 12, 18],
688
+ window_sizes=[7, 7, 14, 7],
689
+ drop_path_rate=drop_path_rate,
690
+ )
691
+
692
+
693
+ @register_tiny_vit_model
694
+ def tiny_vit_21m_384(pretrained=False, num_classes=1000, drop_path_rate=0.1):
695
+ return TinyViT(
696
+ img_size=384,
697
+ num_classes=num_classes,
698
+ embed_dims=[96, 192, 384, 576],
699
+ depths=[2, 2, 6, 2],
700
+ num_heads=[3, 6, 12, 18],
701
+ window_sizes=[12, 12, 24, 12],
702
+ drop_path_rate=drop_path_rate,
703
+ )
704
+
705
+
706
+ @register_tiny_vit_model
707
+ def tiny_vit_21m_512(pretrained=False, num_classes=1000, drop_path_rate=0.1):
708
+ return TinyViT(
709
+ img_size=512,
710
+ num_classes=num_classes,
711
+ embed_dims=[96, 192, 384, 576],
712
+ depths=[2, 2, 6, 2],
713
+ num_heads=[3, 6, 12, 18],
714
+ window_sizes=[16, 16, 32, 16],
715
+ drop_path_rate=drop_path_rate,
716
+ )
per_segment_anything/modeling/transformer.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ from torch import Tensor, nn
9
+
10
+ import math
11
+ from typing import Tuple, Type
12
+
13
+ from .common import MLPBlock
14
+
15
+
16
+ class TwoWayTransformer(nn.Module):
17
+ def __init__(
18
+ self,
19
+ depth: int,
20
+ embedding_dim: int,
21
+ num_heads: int,
22
+ mlp_dim: int,
23
+ activation: Type[nn.Module] = nn.ReLU,
24
+ attention_downsample_rate: int = 2,
25
+ ) -> None:
26
+ """
27
+ A transformer decoder that attends to an input image using
28
+ queries whose positional embedding is supplied.
29
+
30
+ Args:
31
+ depth (int): number of layers in the transformer
32
+ embedding_dim (int): the channel dimension for the input embeddings
33
+ num_heads (int): the number of heads for multihead attention. Must
34
+ divide embedding_dim
35
+ mlp_dim (int): the channel dimension internal to the MLP block
36
+ activation (nn.Module): the activation to use in the MLP block
37
+ """
38
+ super().__init__()
39
+ self.depth = depth
40
+ self.embedding_dim = embedding_dim
41
+ self.num_heads = num_heads
42
+ self.mlp_dim = mlp_dim
43
+ self.layers = nn.ModuleList()
44
+
45
+ for i in range(depth):
46
+ self.layers.append(
47
+ TwoWayAttentionBlock(
48
+ embedding_dim=embedding_dim,
49
+ num_heads=num_heads,
50
+ mlp_dim=mlp_dim,
51
+ activation=activation,
52
+ attention_downsample_rate=attention_downsample_rate,
53
+ skip_first_layer_pe=(i == 0),
54
+ )
55
+ )
56
+
57
+ self.final_attn_token_to_image = Attention(
58
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
59
+ )
60
+ self.norm_final_attn = nn.LayerNorm(embedding_dim)
61
+
62
+ def forward(
63
+ self,
64
+ image_embedding: Tensor,
65
+ image_pe: Tensor,
66
+ point_embedding: Tensor,
67
+ attn_sim: Tensor,
68
+ target_embedding=None
69
+ ) -> Tuple[Tensor, Tensor]:
70
+ """
71
+ Args:
72
+ image_embedding (torch.Tensor): image to attend to. Should be shape
73
+ B x embedding_dim x h x w for any h and w.
74
+ image_pe (torch.Tensor): the positional encoding to add to the image. Must
75
+ have the same shape as image_embedding.
76
+ point_embedding (torch.Tensor): the embedding to add to the query points.
77
+ Must have shape B x N_points x embedding_dim for any N_points.
78
+
79
+ Returns:
80
+ torch.Tensor: the processed point_embedding
81
+ torch.Tensor: the processed image_embedding
82
+ """
83
+ # BxCxHxW -> BxHWxC == B x N_image_tokens x C
84
+ bs, c, h, w = image_embedding.shape
85
+ image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
86
+ image_pe = image_pe.flatten(2).permute(0, 2, 1)
87
+
88
+ # Prepare queries
89
+ queries = point_embedding
90
+ keys = image_embedding
91
+
92
+ # Apply transformer blocks and final layernorm
93
+ for layer in self.layers:
94
+ if target_embedding is not None:
95
+ queries += target_embedding
96
+ queries, keys = layer(
97
+ queries=queries,
98
+ keys=keys,
99
+ query_pe=point_embedding,
100
+ key_pe=image_pe,
101
+ attn_sim=attn_sim,
102
+ )
103
+
104
+ # Apply the final attention layer from the points to the image
105
+ q = queries + point_embedding
106
+ k = keys + image_pe
107
+
108
+ if target_embedding is not None:
109
+ q += target_embedding
110
+ attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
111
+ queries = queries + attn_out
112
+ queries = self.norm_final_attn(queries)
113
+
114
+ return queries, keys
115
+
116
+
117
+ class TwoWayAttentionBlock(nn.Module):
118
+ def __init__(
119
+ self,
120
+ embedding_dim: int,
121
+ num_heads: int,
122
+ mlp_dim: int = 2048,
123
+ activation: Type[nn.Module] = nn.ReLU,
124
+ attention_downsample_rate: int = 2,
125
+ skip_first_layer_pe: bool = False,
126
+ ) -> None:
127
+ """
128
+ A transformer block with four layers: (1) self-attention of sparse
129
+ inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
130
+ block on sparse inputs, and (4) cross attention of dense inputs to sparse
131
+ inputs.
132
+
133
+ Arguments:
134
+ embedding_dim (int): the channel dimension of the embeddings
135
+ num_heads (int): the number of heads in the attention layers
136
+ mlp_dim (int): the hidden dimension of the mlp block
137
+ activation (nn.Module): the activation of the mlp block
138
+ skip_first_layer_pe (bool): skip the PE on the first layer
139
+ """
140
+ super().__init__()
141
+ self.self_attn = Attention(embedding_dim, num_heads)
142
+ self.norm1 = nn.LayerNorm(embedding_dim)
143
+
144
+ self.cross_attn_token_to_image = Attention(
145
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
146
+ )
147
+ self.norm2 = nn.LayerNorm(embedding_dim)
148
+
149
+ self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
150
+ self.norm3 = nn.LayerNorm(embedding_dim)
151
+
152
+ self.norm4 = nn.LayerNorm(embedding_dim)
153
+ self.cross_attn_image_to_token = Attention(
154
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
155
+ )
156
+
157
+ self.skip_first_layer_pe = skip_first_layer_pe
158
+
159
+ def forward(
160
+ self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor, attn_sim: Tensor
161
+ ) -> Tuple[Tensor, Tensor]:
162
+ # Self attention block
163
+ if self.skip_first_layer_pe:
164
+ queries = self.self_attn(q=queries, k=queries, v=queries)
165
+ else:
166
+ q = queries + query_pe
167
+ attn_out = self.self_attn(q=q, k=q, v=queries)
168
+ queries = queries + attn_out
169
+ queries = self.norm1(queries)
170
+
171
+ # Cross attention block, tokens attending to image embedding
172
+ q = queries + query_pe
173
+ k = keys + key_pe
174
+ attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys, attn_sim=attn_sim)
175
+ queries = queries + attn_out
176
+ queries = self.norm2(queries)
177
+
178
+ # MLP block
179
+ mlp_out = self.mlp(queries)
180
+ queries = queries + mlp_out
181
+ queries = self.norm3(queries)
182
+
183
+ # Cross attention block, image embedding attending to tokens
184
+ q = queries + query_pe
185
+ k = keys + key_pe
186
+ attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
187
+ keys = keys + attn_out
188
+ keys = self.norm4(keys)
189
+
190
+ return queries, keys
191
+
192
+
193
+ class Attention(nn.Module):
194
+ """
195
+ An attention layer that allows for downscaling the size of the embedding
196
+ after projection to queries, keys, and values.
197
+ """
198
+
199
+ def __init__(
200
+ self,
201
+ embedding_dim: int,
202
+ num_heads: int,
203
+ downsample_rate: int = 1,
204
+ ) -> None:
205
+ super().__init__()
206
+ self.embedding_dim = embedding_dim
207
+ self.internal_dim = embedding_dim // downsample_rate
208
+ self.num_heads = num_heads
209
+ assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
210
+
211
+ self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
212
+ self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
213
+ self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
214
+ self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
215
+
216
+ def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
217
+ b, n, c = x.shape
218
+ x = x.reshape(b, n, num_heads, c // num_heads)
219
+ return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
220
+
221
+ def _recombine_heads(self, x: Tensor) -> Tensor:
222
+ b, n_heads, n_tokens, c_per_head = x.shape
223
+ x = x.transpose(1, 2)
224
+ return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
225
+
226
+ def forward(self, q: Tensor, k: Tensor, v: Tensor, attn_sim: Tensor = None) -> Tensor:
227
+ # Input projections
228
+ q = self.q_proj(q)
229
+ k = self.k_proj(k)
230
+ v = self.v_proj(v)
231
+
232
+ # Separate into heads
233
+ q = self._separate_heads(q, self.num_heads)
234
+ k = self._separate_heads(k, self.num_heads)
235
+ v = self._separate_heads(v, self.num_heads)
236
+
237
+ # Attention
238
+ _, _, _, c_per_head = q.shape
239
+ attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
240
+ attn = attn / math.sqrt(c_per_head)
241
+ attn = torch.softmax(attn, dim=-1)
242
+
243
+ if attn_sim is not None:
244
+ attn = attn + attn_sim
245
+ attn = torch.softmax(attn, dim=-1)
246
+
247
+ # Get output
248
+ out = attn @ v
249
+ out = self._recombine_heads(out)
250
+ out = self.out_proj(out)
251
+
252
+ return out
per_segment_anything/predictor.py ADDED
@@ -0,0 +1,296 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+
10
+ from typing import Optional, Tuple
11
+
12
+ from .utils.transforms import ResizeLongestSide
13
+
14
+
15
+ class SamPredictor:
16
+ def __init__(
17
+ self,
18
+ sam_model,
19
+ ) -> None:
20
+ """
21
+ Uses SAM to calculate the image embedding for an image, and then
22
+ allow repeated, efficient mask prediction given prompts.
23
+
24
+ Arguments:
25
+ sam_model (Sam): The model to use for mask prediction.
26
+ """
27
+ super().__init__()
28
+ self.model = sam_model
29
+ self.transform = ResizeLongestSide(sam_model.image_encoder.img_size)
30
+ self.reset_image()
31
+
32
+ def set_image(
33
+ self,
34
+ image: np.ndarray,
35
+ mask: np.ndarray = None,
36
+ image_format: str = "RGB",
37
+ cal_image=True
38
+ ) -> None:
39
+ """
40
+ Calculates the image embeddings for the provided image, allowing
41
+ masks to be predicted with the 'predict' method.
42
+
43
+ Arguments:
44
+ image (np.ndarray): The image for calculating masks. Expects an
45
+ image in HWC uint8 format, with pixel values in [0, 255].
46
+ image_format (str): The color format of the image, in ['RGB', 'BGR'].
47
+ """
48
+ assert image_format in [
49
+ "RGB",
50
+ "BGR",
51
+ ], f"image_format must be in ['RGB', 'BGR'], is {image_format}."
52
+ if image_format != self.model.image_format:
53
+ image = image[..., ::-1]
54
+
55
+ # Transform the image to the form expected by the model
56
+ input_image = self.transform.apply_image(image)
57
+ input_image_torch = torch.as_tensor(input_image, device=self.device)
58
+ input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
59
+
60
+ # Transform the mask to the form expected by the model
61
+ input_mask_torch = None
62
+ if mask is not None:
63
+ input_mask = self.transform.apply_image(mask)
64
+ input_mask_torch = torch.as_tensor(input_mask, device=self.device)
65
+ input_mask_torch = input_mask_torch.permute(2, 0, 1).contiguous()[None, :, :, :]
66
+
67
+ input_mask = self.set_torch_image(input_image_torch, image.shape[:2], transformed_mask=input_mask_torch)
68
+ return input_mask
69
+
70
+
71
+ @torch.no_grad()
72
+ def set_torch_image(
73
+ self,
74
+ transformed_image: torch.Tensor,
75
+ original_image_size: Tuple[int, ...],
76
+ transformed_mask: torch.Tensor = None,
77
+ cal_image=True
78
+ ) -> None:
79
+ """
80
+ Calculates the image embeddings for the provided image, allowing
81
+ masks to be predicted with the 'predict' method. Expects the input
82
+ image to be already transformed to the format expected by the model.
83
+
84
+ Arguments:
85
+ transformed_image (torch.Tensor): The input image, with shape
86
+ 1x3xHxW, which has been transformed with ResizeLongestSide.
87
+ original_image_size (tuple(int, int)): The size of the image
88
+ before transformation, in (H, W) format.
89
+ """
90
+ assert (
91
+ len(transformed_image.shape) == 4
92
+ and transformed_image.shape[1] == 3
93
+ and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size
94
+ ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}."
95
+
96
+ if cal_image:
97
+ self.reset_image()
98
+ self.original_size = original_image_size
99
+ self.input_size = tuple(transformed_image.shape[-2:])
100
+ input_image = self.model.preprocess(transformed_image)
101
+ self.features = self.model.image_encoder(input_image)
102
+ self.is_image_set = True
103
+
104
+ if transformed_mask is not None:
105
+ input_mask = self.model.preprocess(transformed_mask) # pad to 1024
106
+ return input_mask
107
+
108
+ def predict(
109
+ self,
110
+ point_coords: Optional[np.ndarray] = None,
111
+ point_labels: Optional[np.ndarray] = None,
112
+ box: Optional[np.ndarray] = None,
113
+ mask_input: Optional[np.ndarray] = None,
114
+ multimask_output: bool = True,
115
+ return_logits: bool = False,
116
+ attn_sim = None,
117
+ target_embedding = None
118
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
119
+ """
120
+ Predict masks for the given input prompts, using the currently set image.
121
+
122
+ Arguments:
123
+ point_coords (np.ndarray or None): A Nx2 array of point prompts to the
124
+ model. Each point is in (X,Y) in pixels.
125
+ point_labels (np.ndarray or None): A length N array of labels for the
126
+ point prompts. 1 indicates a foreground point and 0 indicates a
127
+ background point.
128
+ box (np.ndarray or None): A length 4 array given a box prompt to the
129
+ model, in XYXY format.
130
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
131
+ coming from a previous prediction iteration. Has form 1xHxW, where
132
+ for SAM, H=W=256.
133
+ multimask_output (bool): If true, the model will return three masks.
134
+ For ambiguous input prompts (such as a single click), this will often
135
+ produce better masks than a single prediction. If only a single
136
+ mask is needed, the model's predicted quality score can be used
137
+ to select the best mask. For non-ambiguous prompts, such as multiple
138
+ input prompts, multimask_output=False can give better results.
139
+ return_logits (bool): If true, returns un-thresholded masks logits
140
+ instead of a binary mask.
141
+
142
+ Returns:
143
+ (np.ndarray): The output masks in CxHxW format, where C is the
144
+ number of masks, and (H, W) is the original image size.
145
+ (np.ndarray): An array of length C containing the model's
146
+ predictions for the quality of each mask.
147
+ (np.ndarray): An array of shape CxHxW, where C is the number
148
+ of masks and H=W=256. These low resolution logits can be passed to
149
+ a subsequent iteration as mask input.
150
+ """
151
+ if not self.is_image_set:
152
+ raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
153
+
154
+ # Transform input prompts
155
+ coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
156
+ if point_coords is not None:
157
+ assert (
158
+ point_labels is not None
159
+ ), "point_labels must be supplied if point_coords is supplied."
160
+ point_coords = self.transform.apply_coords(point_coords, self.original_size)
161
+ coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
162
+ labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
163
+ coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
164
+ if box is not None:
165
+ box = self.transform.apply_boxes(box, self.original_size)
166
+ box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
167
+ box_torch = box_torch[None, :]
168
+ if mask_input is not None:
169
+ mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
170
+ mask_input_torch = mask_input_torch[None, :, :, :]
171
+ masks, iou_predictions, low_res_masks, high_res_masks = self.predict_torch(
172
+ coords_torch,
173
+ labels_torch,
174
+ box_torch,
175
+ mask_input_torch,
176
+ multimask_output,
177
+ return_logits=return_logits,
178
+ attn_sim=attn_sim,
179
+ target_embedding=target_embedding,
180
+ )
181
+
182
+ masks = masks[0].detach().cpu().numpy()
183
+ iou_predictions = iou_predictions[0].detach().cpu().numpy()
184
+ low_res_masks = low_res_masks[0].detach().cpu().numpy()
185
+ high_res_masks = high_res_masks[0]
186
+
187
+ return masks, iou_predictions, low_res_masks, high_res_masks
188
+
189
+ @torch.no_grad()
190
+ def predict_torch(
191
+ self,
192
+ point_coords: Optional[torch.Tensor],
193
+ point_labels: Optional[torch.Tensor],
194
+ boxes: Optional[torch.Tensor] = None,
195
+ mask_input: Optional[torch.Tensor] = None,
196
+ multimask_output: bool = True,
197
+ return_logits: bool = False,
198
+ attn_sim = None,
199
+ target_embedding = None
200
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
201
+ """
202
+ Predict masks for the given input prompts, using the currently set image.
203
+ Input prompts are batched torch tensors and are expected to already be
204
+ transformed to the input frame using ResizeLongestSide.
205
+
206
+ Arguments:
207
+ point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
208
+ model. Each point is in (X,Y) in pixels.
209
+ point_labels (torch.Tensor or None): A BxN array of labels for the
210
+ point prompts. 1 indicates a foreground point and 0 indicates a
211
+ background point.
212
+ boxes (np.ndarray or None): A Bx4 array given a box prompt to the
213
+ model, in XYXY format.
214
+ mask_input (np.ndarray): A low resolution mask input to the model, typically
215
+ coming from a previous prediction iteration. Has form Bx1xHxW, where
216
+ for SAM, H=W=256. Masks returned by a previous iteration of the
217
+ predict method do not need further transformation.
218
+ multimask_output (bool): If true, the model will return three masks.
219
+ For ambiguous input prompts (such as a single click), this will often
220
+ produce better masks than a single prediction. If only a single
221
+ mask is needed, the model's predicted quality score can be used
222
+ to select the best mask. For non-ambiguous prompts, such as multiple
223
+ input prompts, multimask_output=False can give better results.
224
+ return_logits (bool): If true, returns un-thresholded masks logits
225
+ instead of a binary mask.
226
+
227
+ Returns:
228
+ (torch.Tensor): The output masks in BxCxHxW format, where C is the
229
+ number of masks, and (H, W) is the original image size.
230
+ (torch.Tensor): An array of shape BxC containing the model's
231
+ predictions for the quality of each mask.
232
+ (torch.Tensor): An array of shape BxCxHxW, where C is the number
233
+ of masks and H=W=256. These low res logits can be passed to
234
+ a subsequent iteration as mask input.
235
+ """
236
+ if not self.is_image_set:
237
+ raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
238
+
239
+ if point_coords is not None:
240
+ points = (point_coords, point_labels)
241
+ else:
242
+ points = None
243
+
244
+ # Embed prompts
245
+ sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
246
+ points=points,
247
+ boxes=boxes,
248
+ masks=mask_input,
249
+ )
250
+
251
+ # Predict masks
252
+ low_res_masks, iou_predictions = self.model.mask_decoder(
253
+ image_embeddings=self.features,
254
+ image_pe=self.model.prompt_encoder.get_dense_pe(),
255
+ sparse_prompt_embeddings=sparse_embeddings,
256
+ dense_prompt_embeddings=dense_embeddings,
257
+ multimask_output=multimask_output,
258
+ attn_sim=attn_sim,
259
+ target_embedding=target_embedding
260
+ )
261
+
262
+ # Upscale the masks to the original image resolution
263
+ high_res_masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size)
264
+
265
+ if not return_logits:
266
+ masks = high_res_masks > self.model.mask_threshold # 0.0
267
+ return masks, iou_predictions, low_res_masks, high_res_masks
268
+ else:
269
+ return high_res_masks, iou_predictions, low_res_masks, high_res_masks
270
+
271
+
272
+ def get_image_embedding(self) -> torch.Tensor:
273
+ """
274
+ Returns the image embeddings for the currently set image, with
275
+ shape 1xCxHxW, where C is the embedding dimension and (H,W) are
276
+ the embedding spatial dimension of SAM (typically C=256, H=W=64).
277
+ """
278
+ if not self.is_image_set:
279
+ raise RuntimeError(
280
+ "An image must be set with .set_image(...) to generate an embedding."
281
+ )
282
+ assert self.features is not None, "Features must exist if an image has been set."
283
+ return self.features
284
+
285
+ @property
286
+ def device(self) -> torch.device:
287
+ return self.model.device
288
+
289
+ def reset_image(self) -> None:
290
+ """Resets the currently set image."""
291
+ self.is_image_set = False
292
+ self.features = None
293
+ self.orig_h = None
294
+ self.orig_w = None
295
+ self.input_h = None
296
+ self.input_w = None
per_segment_anything/utils/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
per_segment_anything/utils/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (160 Bytes). View file
 
per_segment_anything/utils/__pycache__/amg.cpython-38.pyc ADDED
Binary file (12.2 kB). View file
 
per_segment_anything/utils/__pycache__/transforms.cpython-38.pyc ADDED
Binary file (3.99 kB). View file
 
per_segment_anything/utils/amg.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+
10
+ import math
11
+ from copy import deepcopy
12
+ from itertools import product
13
+ from typing import Any, Dict, Generator, ItemsView, List, Tuple
14
+
15
+
16
+ class MaskData:
17
+ """
18
+ A structure for storing masks and their related data in batched format.
19
+ Implements basic filtering and concatenation.
20
+ """
21
+
22
+ def __init__(self, **kwargs) -> None:
23
+ for v in kwargs.values():
24
+ assert isinstance(
25
+ v, (list, np.ndarray, torch.Tensor)
26
+ ), "MaskData only supports list, numpy arrays, and torch tensors."
27
+ self._stats = dict(**kwargs)
28
+
29
+ def __setitem__(self, key: str, item: Any) -> None:
30
+ assert isinstance(
31
+ item, (list, np.ndarray, torch.Tensor)
32
+ ), "MaskData only supports list, numpy arrays, and torch tensors."
33
+ self._stats[key] = item
34
+
35
+ def __delitem__(self, key: str) -> None:
36
+ del self._stats[key]
37
+
38
+ def __getitem__(self, key: str) -> Any:
39
+ return self._stats[key]
40
+
41
+ def items(self) -> ItemsView[str, Any]:
42
+ return self._stats.items()
43
+
44
+ def filter(self, keep: torch.Tensor) -> None:
45
+ for k, v in self._stats.items():
46
+ if v is None:
47
+ self._stats[k] = None
48
+ elif isinstance(v, torch.Tensor):
49
+ self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
50
+ elif isinstance(v, np.ndarray):
51
+ self._stats[k] = v[keep.detach().cpu().numpy()]
52
+ elif isinstance(v, list) and keep.dtype == torch.bool:
53
+ self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
54
+ elif isinstance(v, list):
55
+ self._stats[k] = [v[i] for i in keep]
56
+ else:
57
+ raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
58
+
59
+ def cat(self, new_stats: "MaskData") -> None:
60
+ for k, v in new_stats.items():
61
+ if k not in self._stats or self._stats[k] is None:
62
+ self._stats[k] = deepcopy(v)
63
+ elif isinstance(v, torch.Tensor):
64
+ self._stats[k] = torch.cat([self._stats[k], v], dim=0)
65
+ elif isinstance(v, np.ndarray):
66
+ self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
67
+ elif isinstance(v, list):
68
+ self._stats[k] = self._stats[k] + deepcopy(v)
69
+ else:
70
+ raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
71
+
72
+ def to_numpy(self) -> None:
73
+ for k, v in self._stats.items():
74
+ if isinstance(v, torch.Tensor):
75
+ self._stats[k] = v.detach().cpu().numpy()
76
+
77
+
78
+ def is_box_near_crop_edge(
79
+ boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
80
+ ) -> torch.Tensor:
81
+ """Filter masks at the edge of a crop, but not at the edge of the original image."""
82
+ crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
83
+ orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
84
+ boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
85
+ near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
86
+ near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
87
+ near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
88
+ return torch.any(near_crop_edge, dim=1)
89
+
90
+
91
+ def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
92
+ box_xywh = deepcopy(box_xyxy)
93
+ box_xywh[2] = box_xywh[2] - box_xywh[0]
94
+ box_xywh[3] = box_xywh[3] - box_xywh[1]
95
+ return box_xywh
96
+
97
+
98
+ def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
99
+ assert len(args) > 0 and all(
100
+ len(a) == len(args[0]) for a in args
101
+ ), "Batched iteration must have inputs of all the same size."
102
+ n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
103
+ for b in range(n_batches):
104
+ yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
105
+
106
+
107
+ def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
108
+ """
109
+ Encodes masks to an uncompressed RLE, in the format expected by
110
+ pycoco tools.
111
+ """
112
+ # Put in fortran order and flatten h,w
113
+ b, h, w = tensor.shape
114
+ tensor = tensor.permute(0, 2, 1).flatten(1)
115
+
116
+ # Compute change indices
117
+ diff = tensor[:, 1:] ^ tensor[:, :-1]
118
+ change_indices = diff.nonzero()
119
+
120
+ # Encode run length
121
+ out = []
122
+ for i in range(b):
123
+ cur_idxs = change_indices[change_indices[:, 0] == i, 1]
124
+ cur_idxs = torch.cat(
125
+ [
126
+ torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
127
+ cur_idxs + 1,
128
+ torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
129
+ ]
130
+ )
131
+ btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
132
+ counts = [] if tensor[i, 0] == 0 else [0]
133
+ counts.extend(btw_idxs.detach().cpu().tolist())
134
+ out.append({"size": [h, w], "counts": counts})
135
+ return out
136
+
137
+
138
+ def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
139
+ """Compute a binary mask from an uncompressed RLE."""
140
+ h, w = rle["size"]
141
+ mask = np.empty(h * w, dtype=bool)
142
+ idx = 0
143
+ parity = False
144
+ for count in rle["counts"]:
145
+ mask[idx : idx + count] = parity
146
+ idx += count
147
+ parity ^= True
148
+ mask = mask.reshape(w, h)
149
+ return mask.transpose() # Put in C order
150
+
151
+
152
+ def area_from_rle(rle: Dict[str, Any]) -> int:
153
+ return sum(rle["counts"][1::2])
154
+
155
+
156
+ def calculate_stability_score(
157
+ masks: torch.Tensor, mask_threshold: float, threshold_offset: float
158
+ ) -> torch.Tensor:
159
+ """
160
+ Computes the stability score for a batch of masks. The stability
161
+ score is the IoU between the binary masks obtained by thresholding
162
+ the predicted mask logits at high and low values.
163
+ """
164
+ # One mask is always contained inside the other.
165
+ # Save memory by preventing unnecessary cast to torch.int64
166
+ intersections = (
167
+ (masks > (mask_threshold + threshold_offset))
168
+ .sum(-1, dtype=torch.int16)
169
+ .sum(-1, dtype=torch.int32)
170
+ )
171
+ unions = (
172
+ (masks > (mask_threshold - threshold_offset))
173
+ .sum(-1, dtype=torch.int16)
174
+ .sum(-1, dtype=torch.int32)
175
+ )
176
+ return intersections / unions
177
+
178
+
179
+ def build_point_grid(n_per_side: int) -> np.ndarray:
180
+ """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
181
+ offset = 1 / (2 * n_per_side)
182
+ points_one_side = np.linspace(offset, 1 - offset, n_per_side)
183
+ points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
184
+ points_y = np.tile(points_one_side[:, None], (1, n_per_side))
185
+ points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
186
+ return points
187
+
188
+
189
+ def build_all_layer_point_grids(
190
+ n_per_side: int, n_layers: int, scale_per_layer: int
191
+ ) -> List[np.ndarray]:
192
+ """Generates point grids for all crop layers."""
193
+ points_by_layer = []
194
+ for i in range(n_layers + 1):
195
+ n_points = int(n_per_side / (scale_per_layer**i))
196
+ points_by_layer.append(build_point_grid(n_points))
197
+ return points_by_layer
198
+
199
+
200
+ def generate_crop_boxes(
201
+ im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
202
+ ) -> Tuple[List[List[int]], List[int]]:
203
+ """
204
+ Generates a list of crop boxes of different sizes. Each layer
205
+ has (2**i)**2 boxes for the ith layer.
206
+ """
207
+ crop_boxes, layer_idxs = [], []
208
+ im_h, im_w = im_size
209
+ short_side = min(im_h, im_w)
210
+
211
+ # Original image
212
+ crop_boxes.append([0, 0, im_w, im_h])
213
+ layer_idxs.append(0)
214
+
215
+ def crop_len(orig_len, n_crops, overlap):
216
+ return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
217
+
218
+ for i_layer in range(n_layers):
219
+ n_crops_per_side = 2 ** (i_layer + 1)
220
+ overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
221
+
222
+ crop_w = crop_len(im_w, n_crops_per_side, overlap)
223
+ crop_h = crop_len(im_h, n_crops_per_side, overlap)
224
+
225
+ crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
226
+ crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
227
+
228
+ # Crops in XYWH format
229
+ for x0, y0 in product(crop_box_x0, crop_box_y0):
230
+ box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
231
+ crop_boxes.append(box)
232
+ layer_idxs.append(i_layer + 1)
233
+
234
+ return crop_boxes, layer_idxs
235
+
236
+
237
+ def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
238
+ x0, y0, _, _ = crop_box
239
+ offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
240
+ # Check if boxes has a channel dimension
241
+ if len(boxes.shape) == 3:
242
+ offset = offset.unsqueeze(1)
243
+ return boxes + offset
244
+
245
+
246
+ def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
247
+ x0, y0, _, _ = crop_box
248
+ offset = torch.tensor([[x0, y0]], device=points.device)
249
+ # Check if points has a channel dimension
250
+ if len(points.shape) == 3:
251
+ offset = offset.unsqueeze(1)
252
+ return points + offset
253
+
254
+
255
+ def uncrop_masks(
256
+ masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
257
+ ) -> torch.Tensor:
258
+ x0, y0, x1, y1 = crop_box
259
+ if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
260
+ return masks
261
+ # Coordinate transform masks
262
+ pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
263
+ pad = (x0, pad_x - x0, y0, pad_y - y0)
264
+ return torch.nn.functional.pad(masks, pad, value=0)
265
+
266
+
267
+ def remove_small_regions(
268
+ mask: np.ndarray, area_thresh: float, mode: str
269
+ ) -> Tuple[np.ndarray, bool]:
270
+ """
271
+ Removes small disconnected regions and holes in a mask. Returns the
272
+ mask and an indicator of if the mask has been modified.
273
+ """
274
+ import cv2 # type: ignore
275
+
276
+ assert mode in ["holes", "islands"]
277
+ correct_holes = mode == "holes"
278
+ working_mask = (correct_holes ^ mask).astype(np.uint8)
279
+ n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
280
+ sizes = stats[:, -1][1:] # Row 0 is background label
281
+ small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
282
+ if len(small_regions) == 0:
283
+ return mask, False
284
+ fill_labels = [0] + small_regions
285
+ if not correct_holes:
286
+ fill_labels = [i for i in range(n_labels) if i not in fill_labels]
287
+ # If every region is below threshold, keep largest
288
+ if len(fill_labels) == 0:
289
+ fill_labels = [int(np.argmax(sizes)) + 1]
290
+ mask = np.isin(regions, fill_labels)
291
+ return mask, True
292
+
293
+
294
+ def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
295
+ from pycocotools import mask as mask_utils # type: ignore
296
+
297
+ h, w = uncompressed_rle["size"]
298
+ rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
299
+ rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
300
+ return rle
301
+
302
+
303
+ def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
304
+ """
305
+ Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
306
+ an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
307
+ """
308
+ # torch.max below raises an error on empty inputs, just skip in this case
309
+ if torch.numel(masks) == 0:
310
+ return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
311
+
312
+ # Normalize shape to CxHxW
313
+ shape = masks.shape
314
+ h, w = shape[-2:]
315
+ if len(shape) > 2:
316
+ masks = masks.flatten(0, -3)
317
+ else:
318
+ masks = masks.unsqueeze(0)
319
+
320
+ # Get top and bottom edges
321
+ in_height, _ = torch.max(masks, dim=-1)
322
+ in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
323
+ bottom_edges, _ = torch.max(in_height_coords, dim=-1)
324
+ in_height_coords = in_height_coords + h * (~in_height)
325
+ top_edges, _ = torch.min(in_height_coords, dim=-1)
326
+
327
+ # Get left and right edges
328
+ in_width, _ = torch.max(masks, dim=-2)
329
+ in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
330
+ right_edges, _ = torch.max(in_width_coords, dim=-1)
331
+ in_width_coords = in_width_coords + w * (~in_width)
332
+ left_edges, _ = torch.min(in_width_coords, dim=-1)
333
+
334
+ # If the mask is empty the right edge will be to the left of the left edge.
335
+ # Replace these boxes with [0, 0, 0, 0]
336
+ empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
337
+ out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
338
+ out = out * (~empty_filter).unsqueeze(-1)
339
+
340
+ # Return to original shape
341
+ if len(shape) > 2:
342
+ out = out.reshape(*shape[:-2], 4)
343
+ else:
344
+ out = out[0]
345
+
346
+ return out
per_segment_anything/utils/onnx.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ from torch.nn import functional as F
10
+
11
+ from typing import Tuple
12
+
13
+ from ..modeling import Sam
14
+ from .amg import calculate_stability_score
15
+
16
+
17
+ class SamOnnxModel(nn.Module):
18
+ """
19
+ This model should not be called directly, but is used in ONNX export.
20
+ It combines the prompt encoder, mask decoder, and mask postprocessing of Sam,
21
+ with some functions modified to enable model tracing. Also supports extra
22
+ options controlling what information. See the ONNX export script for details.
23
+ """
24
+
25
+ def __init__(
26
+ self,
27
+ model: Sam,
28
+ return_single_mask: bool,
29
+ use_stability_score: bool = False,
30
+ return_extra_metrics: bool = False,
31
+ ) -> None:
32
+ super().__init__()
33
+ self.mask_decoder = model.mask_decoder
34
+ self.model = model
35
+ self.img_size = model.image_encoder.img_size
36
+ self.return_single_mask = return_single_mask
37
+ self.use_stability_score = use_stability_score
38
+ self.stability_score_offset = 1.0
39
+ self.return_extra_metrics = return_extra_metrics
40
+
41
+ @staticmethod
42
+ def resize_longest_image_size(
43
+ input_image_size: torch.Tensor, longest_side: int
44
+ ) -> torch.Tensor:
45
+ input_image_size = input_image_size.to(torch.float32)
46
+ scale = longest_side / torch.max(input_image_size)
47
+ transformed_size = scale * input_image_size
48
+ transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64)
49
+ return transformed_size
50
+
51
+ def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
52
+ point_coords = point_coords + 0.5
53
+ point_coords = point_coords / self.img_size
54
+ point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
55
+ point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
56
+
57
+ point_embedding = point_embedding * (point_labels != -1)
58
+ point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (
59
+ point_labels == -1
60
+ )
61
+
62
+ for i in range(self.model.prompt_encoder.num_point_embeddings):
63
+ point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[
64
+ i
65
+ ].weight * (point_labels == i)
66
+
67
+ return point_embedding
68
+
69
+ def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
70
+ mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
71
+ mask_embedding = mask_embedding + (
72
+ 1 - has_mask_input
73
+ ) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1)
74
+ return mask_embedding
75
+
76
+ def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor:
77
+ masks = F.interpolate(
78
+ masks,
79
+ size=(self.img_size, self.img_size),
80
+ mode="bilinear",
81
+ align_corners=False,
82
+ )
83
+
84
+ prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size).to(torch.int64)
85
+ masks = masks[..., : prepadded_size[0], : prepadded_size[1]] # type: ignore
86
+
87
+ orig_im_size = orig_im_size.to(torch.int64)
88
+ h, w = orig_im_size[0], orig_im_size[1]
89
+ masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
90
+ return masks
91
+
92
+ def select_masks(
93
+ self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
94
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
95
+ # Determine if we should return the multiclick mask or not from the number of points.
96
+ # The reweighting is used to avoid control flow.
97
+ score_reweight = torch.tensor(
98
+ [[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]
99
+ ).to(iou_preds.device)
100
+ score = iou_preds + (num_points - 2.5) * score_reweight
101
+ best_idx = torch.argmax(score, dim=1)
102
+ masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
103
+ iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
104
+
105
+ return masks, iou_preds
106
+
107
+ @torch.no_grad()
108
+ def forward(
109
+ self,
110
+ image_embeddings: torch.Tensor,
111
+ point_coords: torch.Tensor,
112
+ point_labels: torch.Tensor,
113
+ mask_input: torch.Tensor,
114
+ has_mask_input: torch.Tensor,
115
+ orig_im_size: torch.Tensor,
116
+ ):
117
+ sparse_embedding = self._embed_points(point_coords, point_labels)
118
+ dense_embedding = self._embed_masks(mask_input, has_mask_input)
119
+
120
+ masks, scores = self.model.mask_decoder.predict_masks(
121
+ image_embeddings=image_embeddings,
122
+ image_pe=self.model.prompt_encoder.get_dense_pe(),
123
+ sparse_prompt_embeddings=sparse_embedding,
124
+ dense_prompt_embeddings=dense_embedding,
125
+ )
126
+
127
+ if self.use_stability_score:
128
+ scores = calculate_stability_score(
129
+ masks, self.model.mask_threshold, self.stability_score_offset
130
+ )
131
+
132
+ if self.return_single_mask:
133
+ masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
134
+
135
+ upscaled_masks = self.mask_postprocessing(masks, orig_im_size)
136
+
137
+ if self.return_extra_metrics:
138
+ stability_scores = calculate_stability_score(
139
+ upscaled_masks, self.model.mask_threshold, self.stability_score_offset
140
+ )
141
+ areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
142
+ return upscaled_masks, scores, stability_scores, areas, masks
143
+
144
+ return upscaled_masks, scores, masks
per_segment_anything/utils/transforms.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import numpy as np
8
+ import torch
9
+ from torch.nn import functional as F
10
+ from torchvision.transforms.functional import resize, to_pil_image # type: ignore
11
+
12
+ from copy import deepcopy
13
+ from typing import Tuple
14
+
15
+
16
+ class ResizeLongestSide:
17
+ """
18
+ Resizes images to the longest side 'target_length', as well as provides
19
+ methods for resizing coordinates and boxes. Provides methods for
20
+ transforming both numpy array and batched torch tensors.
21
+ """
22
+
23
+ def __init__(self, target_length: int) -> None:
24
+ self.target_length = target_length
25
+
26
+ def apply_image(self, image: np.ndarray) -> np.ndarray:
27
+ """
28
+ Expects a numpy array with shape HxWxC in uint8 format.
29
+ """
30
+ target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
31
+ return np.array(resize(to_pil_image(image), target_size))
32
+
33
+ def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
34
+ """
35
+ Expects a numpy array of length 2 in the final dimension. Requires the
36
+ original image size in (H, W) format.
37
+ """
38
+ old_h, old_w = original_size
39
+ new_h, new_w = self.get_preprocess_shape(
40
+ original_size[0], original_size[1], self.target_length
41
+ )
42
+ coords = deepcopy(coords).astype(float)
43
+ coords[..., 0] = coords[..., 0] * (new_w / old_w)
44
+ coords[..., 1] = coords[..., 1] * (new_h / old_h)
45
+ return coords
46
+
47
+ def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
48
+ """
49
+ Expects a numpy array shape Bx4. Requires the original image size
50
+ in (H, W) format.
51
+ """
52
+ boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
53
+ return boxes.reshape(-1, 4)
54
+
55
+ def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
56
+ """
57
+ Expects batched images with shape BxCxHxW and float format. This
58
+ transformation may not exactly match apply_image. apply_image is
59
+ the transformation expected by the model.
60
+ """
61
+ # Expects an image in BCHW format. May not exactly match apply_image.
62
+ target_size = self.get_preprocess_shape(image.shape[2], image.shape[3], self.target_length)
63
+ return F.interpolate(
64
+ image, target_size, mode="bilinear", align_corners=False, antialias=True
65
+ )
66
+
67
+ def apply_coords_torch(
68
+ self, coords: torch.Tensor, original_size: Tuple[int, ...]
69
+ ) -> torch.Tensor:
70
+ """
71
+ Expects a torch tensor with length 2 in the last dimension. Requires the
72
+ original image size in (H, W) format.
73
+ """
74
+ old_h, old_w = original_size
75
+ new_h, new_w = self.get_preprocess_shape(
76
+ original_size[0], original_size[1], self.target_length
77
+ )
78
+ coords = deepcopy(coords).to(torch.float)
79
+ coords[..., 0] = coords[..., 0] * (new_w / old_w)
80
+ coords[..., 1] = coords[..., 1] * (new_h / old_h)
81
+ return coords
82
+
83
+ def apply_boxes_torch(
84
+ self, boxes: torch.Tensor, original_size: Tuple[int, ...]
85
+ ) -> torch.Tensor:
86
+ """
87
+ Expects a torch tensor with shape Bx4. Requires the original image
88
+ size in (H, W) format.
89
+ """
90
+ boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
91
+ return boxes.reshape(-1, 4)
92
+
93
+ @staticmethod
94
+ def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
95
+ """
96
+ Compute the output size given input size and target long side length.
97
+ """
98
+ scale = long_side_length * 1.0 / max(oldh, oldw)
99
+ newh, neww = oldh * scale, oldw * scale
100
+ neww = int(neww + 0.5)
101
+ newh = int(newh + 0.5)
102
+ return (newh, neww)
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ matplotlib
2
+ tqdm
3
+ #os
4
+ numpy
5
+ #warnings
6
+ argparse
7
+ opencv-python
8
+ timm
show.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import matplotlib.pyplot as plt
4
+ import cv2
5
+
6
+
7
+
8
+ def show_mask(mask, ax, random_color=False):
9
+ if random_color:
10
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
11
+ else:
12
+ color = np.array([30/255, 144/255, 255/255, 0.4])
13
+ h, w = mask.shape[-2:]
14
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
15
+ ax.imshow(mask_image)
16
+
17
+
18
+ def show_points(coords, labels, ax, marker_size=375):
19
+ pos_points = coords[labels==1]
20
+ neg_points = coords[labels==0]
21
+ ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
22
+ ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
23
+
24
+
25
+ def show_box(box, ax):
26
+ x0, y0 = box[0], box[1]
27
+ w, h = box[2] - box[0], box[3] - box[1]
28
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
weights/mobile_sam.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dbb90523a35330fedd7f1d3dfc66f995213d81b29a5ca8108dbcdd4e37d6c2f
3
+ size 40728226