|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
|
|
import hopsworks |
|
import joblib |
|
|
|
project = hopsworks.login() |
|
fs = project.get_feature_store() |
|
|
|
|
|
mr = project.get_model_registry() |
|
model = mr.get_model("iris_modal", version=1) |
|
model_dir = model.download() |
|
model = joblib.load(model_dir + "/iris_model.pkl") |
|
|
|
|
|
def iris(sepal_length, sepal_width, petal_length, petal_width): |
|
input_list = [] |
|
input_list.append(sepal_length) |
|
input_list.append(sepal_width) |
|
input_list.append(petal_length) |
|
input_list.append(petal_width) |
|
|
|
res = model.predict(np.asarray(input_list).reshape(1, -1)) |
|
|
|
|
|
flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" |
|
img = Image.open(requests.get(flower_url, stream=True).raw) |
|
return img |
|
|
|
demo = gr.Interface( |
|
fn=iris, |
|
title="Iris Flower Predictive Analytics", |
|
description="Experiment with sepal/petal lengths/widths to predict which flower it is.", |
|
allow_flagging="never", |
|
inputs=[ |
|
gr.inputs.Number(default=1.0, label="sepal length (cm)"), |
|
gr.inputs.Number(default=1.0, label="sepal width (cm)"), |
|
gr.inputs.Number(default=1.0, label="petal length (cm)"), |
|
gr.inputs.Number(default=1.0, label="petal width (cm)"), |
|
], |
|
outputs=gr.Image(type="pil")) |
|
|
|
demo.launch() |