import torch
import torch.nn as nn
import math
from torch.utils.checkpoint import checkpoint

from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, CLIPModel

import open_clip
import re
from ldm.util import default, count_params


class AbstractEncoder(nn.Module):
    def __init__(self):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError


class IdentityEncoder(AbstractEncoder):

    def encode(self, x):
        return x


class ClassEmbedder(nn.Module):
    def __init__(self, embed_dim, n_classes=1000, key='class'):
        super().__init__()
        self.key = key
        self.embedding = nn.Embedding(n_classes, embed_dim)

    def forward(self, batch, key=None):
        if key is None:
            key = self.key
        # this is for use in crossattn
        c = batch[key][:, None]
        c = self.embedding(c)
        return c


class FrozenT5Embedder(AbstractEncoder):
    """Uses the T5 transformer encoder for text"""
    def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
        super().__init__()
        self.tokenizer = T5Tokenizer.from_pretrained(version)
        self.transformer = T5EncoderModel.from_pretrained(version)
        self.device = device
        self.max_length = max_length   # TODO: typical value?
        if freeze:
            self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens)

        z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)


class FrozenCLIPEmbedder(AbstractEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
                 freeze=True, layer="last"):  # clip-vit-base-patch32
        super().__init__()
        self.tokenizer = CLIPTokenizer.from_pretrained(version)
        self.transformer = CLIPModel.from_pretrained(version).text_model
        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer

    def freeze(self):
        self.transformer = self.transformer.eval()
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)
        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer != 'last')

        if self.layer == 'penultimate':
            z = outputs.hidden_states[-2]
            z = self.transformer.final_layer_norm(z)
        else:
            z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)


class FrozenOpenCLIPEmbedder(AbstractEncoder):
    """
    Uses the OpenCLIP transformer encoder for text
    """
    LAYERS = [
        #"pooled",
        "last",
        "penultimate"
    ]
    def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
                 freeze=True, layer="last"):
        super().__init__()
        assert layer in self.LAYERS
        model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
        del model.visual
        self.model = model

        self.device = device
        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        if self.layer == "last":
            self.layer_idx = 0
        elif self.layer == "penultimate":
            self.layer_idx = 1
        else:
            raise NotImplementedError()

    def freeze(self):
        self.model = self.model.eval()
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        tokens = open_clip.tokenize(text)
        z = self.encode_with_transformer(tokens.to(self.device))
        return z

    def encode_with_transformer(self, text):
        x = self.model.token_embedding(text)  # [batch_size, n_ctx, d_model]
        x = x + self.model.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.model.ln_final(x)
        return x

    def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
        for i, r in enumerate(self.model.transformer.resblocks):
            if i == len(self.model.transformer.resblocks) - self.layer_idx:
                break
            if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(r, x, attn_mask)
            else:
                x = r(x, attn_mask=attn_mask)
        return x

    def encode(self, text):
        return self(text)


class FrozenCLIPT5Encoder(AbstractEncoder):
    def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
                 clip_max_length=77, t5_max_length=77):
        super().__init__()
        self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
        self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
        print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
              f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")

    def encode(self, text):
        return self(text)

    def forward(self, text):
        clip_z = self.clip_encoder.encode(text)
        t5_z = self.t5_encoder.encode(text)
        return [clip_z, t5_z]


# code from sd-webui
re_attention = re.compile(r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""", re.X)


def parse_prompt_attention(text):
    """
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
      \( - literal character '('
      \[ - literal character '['
      \) - literal character ')'
      \] - literal character ']'
      \\ - literal character '\'
      anything else - just text

    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
    >>> parse_prompt_attention('\(literal\]')
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith('\\'):
            res.append([text[1:], 1.0])
        elif text == '(':
            round_brackets.append(len(res))
        elif text == '[':
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ')' and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == ']' and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            res.append([text, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res

class WebUIFrozenCLIPEmebedder(AbstractEncoder):
    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", freeze=True, layer="penultimate"):
        super(WebUIFrozenCLIPEmebedder, self).__init__()
        self.tokenizer = CLIPTokenizer.from_pretrained(version)
        self.transformer = CLIPModel.from_pretrained(version).text_model
        self.device = device
        self.layer = layer
        if freeze:
            self.freeze()

        self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ',</w>'][0]
        self.comma_padding_backtrack = 20

    def freeze(self):
        self.transformer = self.transformer.eval()
        for param in self.parameters():
            param.requires_grad = False

    def tokenize(self, texts):
        tokenized = self.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
        return tokenized

    def encode_with_transformers(self, tokens):
        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer!='last')

        if self.layer == 'penultimate':
            z = outputs.hidden_states[-2]
            z = self.transformer.final_layer_norm(z)
        else:
            z = outputs.last_hidden_state

        return z

    def tokenize_line(self, line):
        parsed = parse_prompt_attention(line)
        # print(parsed)

        tokenized = self.tokenize([text for text, _ in parsed])

        remade_tokens = []
        multipliers = []
        last_comma = -1

        for tokens, (text, weight) in zip(tokenized, parsed):
            i = 0
            while i < len(tokens):
                token = tokens[i]

                if token == self.comma_token:
                    last_comma = len(remade_tokens)
                elif self.comma_padding_backtrack != 0 and max(len(remade_tokens),
                                                               1) % 75 == 0 and last_comma != -1 and len(
                        remade_tokens) - last_comma <= self.comma_padding_backtrack:
                    last_comma += 1
                    reloc_tokens = remade_tokens[last_comma:]
                    reloc_mults = multipliers[last_comma:]

                    remade_tokens = remade_tokens[:last_comma]
                    length = len(remade_tokens)

                    rem = int(math.ceil(length / 75)) * 75 - length
                    remade_tokens += [self.tokenizer.eos_token_id] * rem + reloc_tokens
                    multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults

                remade_tokens.append(token)
                multipliers.append(weight)
                i += 1

        token_count = len(remade_tokens)
        prompt_target_length = math.ceil(max(token_count, 1) / 75) * 75
        tokens_to_add = prompt_target_length - len(remade_tokens)

        remade_tokens = remade_tokens + [self.tokenizer.eos_token_id] * tokens_to_add
        multipliers = multipliers + [1.0] * tokens_to_add

        return remade_tokens, multipliers, token_count

    def process_text(self, texts):
        remade_batch_tokens = []
        token_count = 0

        cache = {}
        batch_multipliers = []
        for line in texts:
            if line in cache:
                remade_tokens, multipliers = cache[line]
            else:
                remade_tokens, multipliers, current_token_count = self.tokenize_line(line)
                token_count = max(current_token_count, token_count)

                cache[line] = (remade_tokens, multipliers)

            remade_batch_tokens.append(remade_tokens)
            batch_multipliers.append(multipliers)

        return batch_multipliers, remade_batch_tokens, token_count

    def process_tokens(self, remade_batch_tokens, batch_multipliers):
        remade_batch_tokens = [[self.tokenizer.bos_token_id] + x[:75] + [self.tokenizer.eos_token_id] for x in remade_batch_tokens]
        batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]

        tokens = torch.asarray(remade_batch_tokens).to(self.device)

        z = self.encode_with_transformers(tokens)

        # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
        batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
        batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(self.device)
        original_mean = z.mean()
        z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
        new_mean = z.mean()
        z *= original_mean / new_mean

        return z

    def forward(self, text):
        batch_multipliers, remade_batch_tokens, token_count = self.process_text(text)

        z = None
        i = 0
        while max(map(len, remade_batch_tokens)) != 0:
            rem_tokens = [x[75:] for x in remade_batch_tokens]
            rem_multipliers = [x[75:] for x in batch_multipliers]

            tokens = []
            multipliers = []
            for j in range(len(remade_batch_tokens)):
                if len(remade_batch_tokens[j]) > 0:
                    tokens.append(remade_batch_tokens[j][:75])
                    multipliers.append(batch_multipliers[j][:75])
                else:
                    tokens.append([self.tokenizer.eos_token_id] * 75)
                    multipliers.append([1.0] * 75)

            z1 = self.process_tokens(tokens, multipliers)
            z = z1 if z is None else torch.cat((z, z1), axis=-2)

            remade_batch_tokens = rem_tokens
            batch_multipliers = rem_multipliers
            i += 1

        return z

    def encode(self, text):
        return self(text)



if __name__ == "__main__":
    model = FrozenCLIPEmbedder()
    count_params(model, verbose=True)