from enum import Enum, unique import cv2 import torch from basicsr.utils import img2tensor from ldm.util import resize_numpy_image from PIL import Image from torch import autocast @unique class ExtraCondition(Enum): sketch = 0 keypose = 1 seg = 2 depth = 3 canny = 4 style = 5 color = 6 openpose = 7 def get_cond_model(opt, cond_type: ExtraCondition): if cond_type == ExtraCondition.sketch: from ldm.modules.extra_condition.model_edge import pidinet model = pidinet() ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict'] model.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()}, strict=True) model.to(opt.device) return model elif cond_type == ExtraCondition.seg: raise NotImplementedError elif cond_type == ExtraCondition.keypose: import mmcv from mmdet.apis import init_detector from mmpose.apis import init_pose_model det_config = 'configs/mm/faster_rcnn_r50_fpn_coco.py' det_checkpoint = 'models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' pose_config = 'configs/mm/hrnet_w48_coco_256x192.py' pose_checkpoint = 'models/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config_mmcv = mmcv.Config.fromfile(det_config) det_model = init_detector(det_config_mmcv, det_checkpoint, device=opt.device) pose_config_mmcv = mmcv.Config.fromfile(pose_config) pose_model = init_pose_model(pose_config_mmcv, pose_checkpoint, device=opt.device) return {'pose_model': pose_model, 'det_model': det_model} elif cond_type == ExtraCondition.depth: from ldm.modules.extra_condition.midas.api import MiDaSInference model = MiDaSInference(model_type='dpt_hybrid').to(opt.device) return model elif cond_type == ExtraCondition.canny: return None elif cond_type == ExtraCondition.style: from transformers import CLIPProcessor, CLIPVisionModel version = 'openai/clip-vit-large-patch14' processor = CLIPProcessor.from_pretrained(version) clip_vision_model = CLIPVisionModel.from_pretrained(version).to(opt.device) return {'processor': processor, 'clip_vision_model': clip_vision_model} elif cond_type == ExtraCondition.color: return None elif cond_type == ExtraCondition.openpose: from ldm.modules.extra_condition.openpose.api import OpenposeInference model = OpenposeInference().to(opt.device) return model else: raise NotImplementedError def get_cond_sketch(opt, cond_image, cond_inp_type, cond_model=None): if isinstance(cond_image, str): edge = cv2.imread(cond_image) else: # for gradio input, pay attention, it's rgb numpy edge = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) edge = resize_numpy_image(edge, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) opt.H, opt.W = edge.shape[:2] if cond_inp_type == 'sketch': edge = img2tensor(edge)[0].unsqueeze(0).unsqueeze(0) / 255. edge = edge.to(opt.device) elif cond_inp_type == 'image': edge = img2tensor(edge).unsqueeze(0) / 255. edge = cond_model(edge.to(opt.device))[-1] else: raise NotImplementedError # edge = 1-edge # for white background edge = edge > 0.5 edge = edge.float() return edge def get_cond_seg(opt, cond_image, cond_inp_type='image', cond_model=None): if isinstance(cond_image, str): seg = cv2.imread(cond_image) else: seg = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) seg = resize_numpy_image(seg, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) opt.H, opt.W = seg.shape[:2] if cond_inp_type == 'seg': seg = img2tensor(seg).unsqueeze(0) / 255. seg = seg.to(opt.device) else: raise NotImplementedError return seg def get_cond_keypose(opt, cond_image, cond_inp_type='image', cond_model=None): if isinstance(cond_image, str): pose = cv2.imread(cond_image) else: pose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) pose = resize_numpy_image(pose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) opt.H, opt.W = pose.shape[:2] if cond_inp_type == 'keypose': pose = img2tensor(pose).unsqueeze(0) / 255. pose = pose.to(opt.device) elif cond_inp_type == 'image': from ldm.modules.extra_condition.utils import imshow_keypoints from mmdet.apis import inference_detector from mmpose.apis import (inference_top_down_pose_model, process_mmdet_results) # mmpose seems not compatible with autocast fp16 with autocast("cuda", dtype=torch.float32): mmdet_results = inference_detector(cond_model['det_model'], pose) # keep the person class bounding boxes. person_results = process_mmdet_results(mmdet_results, 1) # optional return_heatmap = False dataset = cond_model['pose_model'].cfg.data['test']['type'] # e.g. use ('backbone', ) to return backbone feature output_layer_names = None pose_results, returned_outputs = inference_top_down_pose_model( cond_model['pose_model'], pose, person_results, bbox_thr=0.2, format='xyxy', dataset=dataset, dataset_info=None, return_heatmap=return_heatmap, outputs=output_layer_names) # show the results pose = imshow_keypoints(pose, pose_results, radius=2, thickness=2) pose = img2tensor(pose).unsqueeze(0) / 255. pose = pose.to(opt.device) else: raise NotImplementedError return pose def get_cond_depth(opt, cond_image, cond_inp_type='image', cond_model=None): if isinstance(cond_image, str): depth = cv2.imread(cond_image) else: depth = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) depth = resize_numpy_image(depth, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) opt.H, opt.W = depth.shape[:2] if cond_inp_type == 'depth': depth = img2tensor(depth).unsqueeze(0) / 255. depth = depth.to(opt.device) elif cond_inp_type == 'image': depth = img2tensor(depth).unsqueeze(0) / 127.5 - 1.0 depth = cond_model(depth.to(opt.device)).repeat(1, 3, 1, 1) depth -= torch.min(depth) depth /= torch.max(depth) else: raise NotImplementedError return depth def get_cond_canny(opt, cond_image, cond_inp_type='image', cond_model=None): if isinstance(cond_image, str): canny = cv2.imread(cond_image) else: canny = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) canny = resize_numpy_image(canny, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) opt.H, opt.W = canny.shape[:2] if cond_inp_type == 'canny': canny = img2tensor(canny)[0:1].unsqueeze(0) / 255. canny = canny.to(opt.device) elif cond_inp_type == 'image': canny = cv2.Canny(canny, 100, 200)[..., None] canny = img2tensor(canny).unsqueeze(0) / 255. canny = canny.to(opt.device) else: raise NotImplementedError return canny def get_cond_style(opt, cond_image, cond_inp_type='image', cond_model=None): assert cond_inp_type == 'image' if isinstance(cond_image, str): style = Image.open(cond_image) else: # numpy image to PIL image style = Image.fromarray(cond_image) style_for_clip = cond_model['processor'](images=style, return_tensors="pt")['pixel_values'] style_feat = cond_model['clip_vision_model'](style_for_clip.to(opt.device))['last_hidden_state'] return style_feat def get_cond_color(opt, cond_image, cond_inp_type='image', cond_model=None): if isinstance(cond_image, str): color = cv2.imread(cond_image) else: color = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) color = resize_numpy_image(color, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) opt.H, opt.W = color.shape[:2] if cond_inp_type == 'image': color = cv2.resize(color, (opt.W//64, opt.H//64), interpolation=cv2.INTER_CUBIC) color = cv2.resize(color, (opt.W, opt.H), interpolation=cv2.INTER_NEAREST) color = img2tensor(color).unsqueeze(0) / 255. color = color.to(opt.device) return color def get_cond_openpose(opt, cond_image, cond_inp_type='image', cond_model=None): if isinstance(cond_image, str): openpose_keypose = cv2.imread(cond_image) else: openpose_keypose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR) openpose_keypose = resize_numpy_image( openpose_keypose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge) opt.H, opt.W = openpose_keypose.shape[:2] if cond_inp_type == 'openpose': openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255. openpose_keypose = openpose_keypose.to(opt.device) elif cond_inp_type == 'image': with autocast('cuda', dtype=torch.float32): openpose_keypose = cond_model(openpose_keypose) openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255. openpose_keypose = openpose_keypose.to(opt.device) else: raise NotImplementedError return openpose_keypose def get_adapter_feature(inputs, adapters): ret_feat_map = None ret_feat_seq = None if not isinstance(inputs, list): inputs = [inputs] adapters = [adapters] for input, adapter in zip(inputs, adapters): cur_feature = adapter['model'](input) if isinstance(cur_feature, list): if ret_feat_map is None: ret_feat_map = list(map(lambda x: x * adapter['cond_weight'], cur_feature)) else: ret_feat_map = list(map(lambda x, y: x + y * adapter['cond_weight'], ret_feat_map, cur_feature)) else: if ret_feat_seq is None: ret_feat_seq = cur_feature * adapter['cond_weight'] else: ret_feat_seq = torch.cat([ret_feat_seq, cur_feature * adapter['cond_weight']], dim=1) return ret_feat_map, ret_feat_seq