File size: 7,941 Bytes
fb6c2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
from torch import nn
import torch.nn.functional as F
from einops import repeat

from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
from taming.modules.losses.lpips import LPIPS
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss


def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
    assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
    loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
    loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
    loss_real = (weights * loss_real).sum() / weights.sum()
    loss_fake = (weights * loss_fake).sum() / weights.sum()
    d_loss = 0.5 * (loss_real + loss_fake)
    return d_loss

def adopt_weight(weight, global_step, threshold=0, value=0.):
    if global_step < threshold:
        weight = value
    return weight


def measure_perplexity(predicted_indices, n_embed):
    # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
    # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
    encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
    avg_probs = encodings.mean(0)
    perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
    cluster_use = torch.sum(avg_probs > 0)
    return perplexity, cluster_use

def l1(x, y):
    return torch.abs(x-y)


def l2(x, y):
    return torch.pow((x-y), 2)


class VQLPIPSWithDiscriminator(nn.Module):
    def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
                 disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
                 perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
                 disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
                 pixel_loss="l1"):
        super().__init__()
        assert disc_loss in ["hinge", "vanilla"]
        assert perceptual_loss in ["lpips", "clips", "dists"]
        assert pixel_loss in ["l1", "l2"]
        self.codebook_weight = codebook_weight
        self.pixel_weight = pixelloss_weight
        if perceptual_loss == "lpips":
            print(f"{self.__class__.__name__}: Running with LPIPS.")
            self.perceptual_loss = LPIPS().eval()
        else:
            raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
        self.perceptual_weight = perceptual_weight

        if pixel_loss == "l1":
            self.pixel_loss = l1
        else:
            self.pixel_loss = l2

        self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
                                                 n_layers=disc_num_layers,
                                                 use_actnorm=use_actnorm,
                                                 ndf=disc_ndf
                                                 ).apply(weights_init)
        self.discriminator_iter_start = disc_start
        if disc_loss == "hinge":
            self.disc_loss = hinge_d_loss
        elif disc_loss == "vanilla":
            self.disc_loss = vanilla_d_loss
        else:
            raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
        print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
        self.disc_factor = disc_factor
        self.discriminator_weight = disc_weight
        self.disc_conditional = disc_conditional
        self.n_classes = n_classes

    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
        if last_layer is not None:
            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
        else:
            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]

        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
        d_weight = d_weight * self.discriminator_weight
        return d_weight

    def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
                global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
        if not exists(codebook_loss):
            codebook_loss = torch.tensor([0.]).to(inputs.device)
        #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
        rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
        if self.perceptual_weight > 0:
            p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
            rec_loss = rec_loss + self.perceptual_weight * p_loss
        else:
            p_loss = torch.tensor([0.0])

        nll_loss = rec_loss
        #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
        nll_loss = torch.mean(nll_loss)

        # now the GAN part
        if optimizer_idx == 0:
            # generator update
            if cond is None:
                assert not self.disc_conditional
                logits_fake = self.discriminator(reconstructions.contiguous())
            else:
                assert self.disc_conditional
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
            g_loss = -torch.mean(logits_fake)

            try:
                d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
            except RuntimeError:
                assert not self.training
                d_weight = torch.tensor(0.0)

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()

            log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
                   "{}/quant_loss".format(split): codebook_loss.detach().mean(),
                   "{}/nll_loss".format(split): nll_loss.detach().mean(),
                   "{}/rec_loss".format(split): rec_loss.detach().mean(),
                   "{}/p_loss".format(split): p_loss.detach().mean(),
                   "{}/d_weight".format(split): d_weight.detach(),
                   "{}/disc_factor".format(split): torch.tensor(disc_factor),
                   "{}/g_loss".format(split): g_loss.detach().mean(),
                   }
            if predicted_indices is not None:
                assert self.n_classes is not None
                with torch.no_grad():
                    perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
                log[f"{split}/perplexity"] = perplexity
                log[f"{split}/cluster_usage"] = cluster_usage
            return loss, log

        if optimizer_idx == 1:
            # second pass for discriminator update
            if cond is None:
                logits_real = self.discriminator(inputs.contiguous().detach())
                logits_fake = self.discriminator(reconstructions.contiguous().detach())
            else:
                logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))

            disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)

            log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
                   "{}/logits_real".format(split): logits_real.detach().mean(),
                   "{}/logits_fake".format(split): logits_fake.detach().mean()
                   }
            return d_loss, log