Spaces:
Runtime error
Runtime error
File size: 11,256 Bytes
fb6c2da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import os.path as osp
import cv2
import numpy as np
import torch
from basicsr.utils import img2tensor, tensor2img
from pytorch_lightning import seed_everything
from ldm.models.diffusion.plms import PLMSSampler
from ldm.modules.encoders.adapter import Adapter
from ldm.util import instantiate_from_config
from model_edge import pidinet
import gradio as gr
from omegaconf import OmegaConf
import mmcv
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import (inference_top_down_pose_model, init_pose_model, process_mmdet_results, vis_pose_result)
skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], [8, 10],
[1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]]
pose_kpt_color = [[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0],
[255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0],
[0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0]]
pose_link_color = [[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0],
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0], [255, 128, 0],
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255],
[51, 153, 255], [51, 153, 255], [51, 153, 255]]
def imshow_keypoints(img,
pose_result,
skeleton=None,
kpt_score_thr=0.1,
pose_kpt_color=None,
pose_link_color=None,
radius=4,
thickness=1):
"""Draw keypoints and links on an image.
Args:
img (ndarry): The image to draw poses on.
pose_result (list[kpts]): The poses to draw. Each element kpts is
a set of K keypoints as an Kx3 numpy.ndarray, where each
keypoint is represented as x, y, score.
kpt_score_thr (float, optional): Minimum score of keypoints
to be shown. Default: 0.3.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
the keypoint will not be drawn.
pose_link_color (np.array[Mx3]): Color of M links. If None, the
links will not be drawn.
thickness (int): Thickness of lines.
"""
img_h, img_w, _ = img.shape
img = np.zeros(img.shape)
for idx, kpts in enumerate(pose_result):
if idx > 1:
continue
kpts = kpts['keypoints']
# print(kpts)
kpts = np.array(kpts, copy=False)
# draw each point on image
if pose_kpt_color is not None:
assert len(pose_kpt_color) == len(kpts)
for kid, kpt in enumerate(kpts):
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
# skip the point that should not be drawn
continue
color = tuple(int(c) for c in pose_kpt_color[kid])
cv2.circle(img, (int(x_coord), int(y_coord)), radius, color, -1)
# draw links
if skeleton is not None and pose_link_color is not None:
assert len(pose_link_color) == len(skeleton)
for sk_id, sk in enumerate(skeleton):
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0
or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr
or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None):
# skip the link that should not be drawn
continue
color = tuple(int(c) for c in pose_link_color[sk_id])
cv2.line(img, pos1, pos2, color, thickness=thickness)
return img
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.cuda()
model.eval()
return model
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = OmegaConf.load("configs/stable-diffusion/test_keypose.yaml")
config.model.params.cond_stage_config.params.device = device
model = load_model_from_config(config, "models/sd-v1-4.ckpt").to(device)
current_base = 'sd-v1-4.ckpt'
model_ad = Adapter(cin=int(3*64), channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(device)
model_ad.load_state_dict(torch.load("models/t2iadapter_keypose_sd14v1.pth"))
sampler = PLMSSampler(model)
## mmpose
det_config = 'models/faster_rcnn_r50_fpn_coco.py'
det_checkpoint = 'models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
pose_config = 'models/hrnet_w48_coco_256x192.py'
pose_checkpoint = 'models/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
det_cat_id = 1
bbox_thr = 0.2
## detector
det_config_mmcv = mmcv.Config.fromfile(det_config)
det_model = init_detector(det_config_mmcv, det_checkpoint, device=device)
pose_config_mmcv = mmcv.Config.fromfile(pose_config)
pose_model = init_pose_model(pose_config_mmcv, pose_checkpoint, device=device)
W, H = 512, 512
def process(input_img, type_in, prompt, neg_prompt, fix_sample, scale, con_strength, base_model):
global current_base
if current_base != base_model:
ckpt = os.path.join("models", base_model)
pl_sd = torch.load(ckpt, map_location="cpu")
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
sd = pl_sd
model.load_state_dict(sd, strict=False)
current_base = base_model
con_strength = int((1-con_strength)*50)
if fix_sample == 'True':
seed_everything(42)
im = cv2.resize(input_img,(W,H))
if type_in == 'Keypose':
im_pose = im.copy()
im = img2tensor(im).unsqueeze(0)/255.
elif type_in == 'Image':
image = im.copy()
im = img2tensor(im).unsqueeze(0)/255.
mmdet_results = inference_detector(det_model, image)
# keep the person class bounding boxes.
person_results = process_mmdet_results(mmdet_results, det_cat_id)
# optional
return_heatmap = False
dataset = pose_model.cfg.data['test']['type']
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
pose_results, returned_outputs = inference_top_down_pose_model(
pose_model,
image,
person_results,
bbox_thr=bbox_thr,
format='xyxy',
dataset=dataset,
dataset_info=None,
return_heatmap=return_heatmap,
outputs=output_layer_names)
# show the results
im_pose = imshow_keypoints(
image,
pose_results,
skeleton=skeleton,
pose_kpt_color=pose_kpt_color,
pose_link_color=pose_link_color,
radius=2,
thickness=2)
im_pose = cv2.resize(im_pose,(W,H))
with torch.no_grad():
c = model.get_learned_conditioning([prompt])
nc = model.get_learned_conditioning([neg_prompt])
# extract condition features
pose = img2tensor(im_pose, bgr2rgb=True, float32=True)/255.
pose = pose.unsqueeze(0)
features_adapter = model_ad(pose.to(device))
shape = [4, W//8, H//8]
# sampling
samples_ddim, _ = sampler.sample(S=50,
conditioning=c,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=nc,
eta=0.0,
x_T=None,
features_adapter1=features_adapter,
mode = 'sketch',
con_strength = con_strength)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.to('cpu')
x_samples_ddim = x_samples_ddim.permute(0, 2, 3, 1).numpy()[0]
x_samples_ddim = 255.*x_samples_ddim
x_samples_ddim = x_samples_ddim.astype(np.uint8)
return [im_pose[:,:,::-1].astype(np.uint8), x_samples_ddim]
DESCRIPTION = '''# T2I-Adapter (Keypose)
[Paper](https://arxiv.org/abs/2302.08453) [GitHub](https://github.com/TencentARC/T2I-Adapter)
This gradio demo is for keypose-guided generation. The current functions include:
- Keypose to Image Generation
- Image to Image Generation
- Generation with **Anything** setting
'''
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
input_img = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
neg_prompt = gr.Textbox(label="Negative Prompt",
value='ugly, tiling, poorly drawn hands, poorly drawn feet, poorly drawn face, out of frame, extra limbs, disfigured, deformed, body out of frame, bad anatomy, watermark, signature, cut off, low contrast, underexposed, overexposed, bad art, beginner, amateur, distorted face')
with gr.Row():
type_in = gr.inputs.Radio(['Keypose', 'Image'], type="value", default='Image', label='Input Types\n (You can input an image or a keypose map)')
fix_sample = gr.inputs.Radio(['True', 'False'], type="value", default='False', label='Fix Sampling\n (Fix the random seed to produce a fixed output)')
run_button = gr.Button(label="Run")
con_strength = gr.Slider(label="Controling Strength (The guidance strength of the keypose to the result)", minimum=0, maximum=1, value=1, step=0.1)
scale = gr.Slider(label="Guidance Scale (Classifier free guidance)", minimum=0.1, maximum=30.0, value=9, step=0.1)
base_model = gr.inputs.Radio(['sd-v1-4.ckpt', 'anything-v4.0-pruned.ckpt'], type="value", default='sd-v1-4.ckpt', label='The base model you want to use')
with gr.Column():
result = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [input_img, type_in, prompt, neg_prompt, fix_sample, scale, con_strength, base_model]
run_button.click(fn=process, inputs=ips, outputs=[result])
block.launch(server_name='0.0.0.0')
|