File size: 10,400 Bytes
b3478e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from enum import Enum, unique

import cv2
import torch
from basicsr.utils import img2tensor
from ldm.util import resize_numpy_image
from PIL import Image
from torch import autocast


@unique
class ExtraCondition(Enum):
    sketch = 0
    keypose = 1
    seg = 2
    depth = 3
    canny = 4
    style = 5
    color = 6
    openpose = 7


def get_cond_model(opt, cond_type: ExtraCondition):
    if cond_type == ExtraCondition.sketch:
        from ldm.modules.extra_condition.model_edge import pidinet
        model = pidinet()
        ckp = torch.load('models/table5_pidinet.pth', map_location='cpu')['state_dict']
        model.load_state_dict({k.replace('module.', ''): v for k, v in ckp.items()}, strict=True)
        model.to(opt.device)
        return model
    elif cond_type == ExtraCondition.seg:
        raise NotImplementedError
    elif cond_type == ExtraCondition.keypose:
        import mmcv
        from mmdet.apis import init_detector
        from mmpose.apis import init_pose_model
        det_config = 'configs/mm/faster_rcnn_r50_fpn_coco.py'
        det_checkpoint = 'models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
        pose_config = 'configs/mm/hrnet_w48_coco_256x192.py'
        pose_checkpoint = 'models/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
        det_config_mmcv = mmcv.Config.fromfile(det_config)
        det_model = init_detector(det_config_mmcv, det_checkpoint, device=opt.device)
        pose_config_mmcv = mmcv.Config.fromfile(pose_config)
        pose_model = init_pose_model(pose_config_mmcv, pose_checkpoint, device=opt.device)
        return {'pose_model': pose_model, 'det_model': det_model}
    elif cond_type == ExtraCondition.depth:
        from ldm.modules.extra_condition.midas.api import MiDaSInference
        model = MiDaSInference(model_type='dpt_hybrid').to(opt.device)
        return model
    elif cond_type == ExtraCondition.canny:
        return None
    elif cond_type == ExtraCondition.style:
        from transformers import CLIPProcessor, CLIPVisionModel
        version = 'openai/clip-vit-large-patch14'
        processor = CLIPProcessor.from_pretrained(version)
        clip_vision_model = CLIPVisionModel.from_pretrained(version).to(opt.device)
        return {'processor': processor, 'clip_vision_model': clip_vision_model}
    elif cond_type == ExtraCondition.color:
        return None
    elif cond_type == ExtraCondition.openpose:
        from ldm.modules.extra_condition.openpose.api import OpenposeInference
        model = OpenposeInference().to(opt.device)
        return model
    else:
        raise NotImplementedError


def get_cond_sketch(opt, cond_image, cond_inp_type, cond_model=None):
    if isinstance(cond_image, str):
        edge = cv2.imread(cond_image)
    else:
        # for gradio input, pay attention, it's rgb numpy
        edge = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
    edge = resize_numpy_image(edge, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
    opt.H, opt.W = edge.shape[:2]
    if cond_inp_type == 'sketch':
        edge = img2tensor(edge)[0].unsqueeze(0).unsqueeze(0) / 255.
        edge = edge.to(opt.device)
    elif cond_inp_type == 'image':
        edge = img2tensor(edge).unsqueeze(0) / 255.
        edge = cond_model(edge.to(opt.device))[-1]
    else:
        raise NotImplementedError

    # edge = 1-edge # for white background
    edge = edge > 0.5
    edge = edge.float()

    return edge


def get_cond_seg(opt, cond_image, cond_inp_type='image', cond_model=None):
    if isinstance(cond_image, str):
        seg = cv2.imread(cond_image)
    else:
        seg = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
    seg = resize_numpy_image(seg, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
    opt.H, opt.W = seg.shape[:2]
    if cond_inp_type == 'seg':
        seg = img2tensor(seg).unsqueeze(0) / 255.
        seg = seg.to(opt.device)
    else:
        raise NotImplementedError

    return seg


def get_cond_keypose(opt, cond_image, cond_inp_type='image', cond_model=None):
    if isinstance(cond_image, str):
        pose = cv2.imread(cond_image)
    else:
        pose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
    pose = resize_numpy_image(pose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
    opt.H, opt.W = pose.shape[:2]
    if cond_inp_type == 'keypose':
        pose = img2tensor(pose).unsqueeze(0) / 255.
        pose = pose.to(opt.device)
    elif cond_inp_type == 'image':
        from ldm.modules.extra_condition.utils import imshow_keypoints
        from mmdet.apis import inference_detector
        from mmpose.apis import (inference_top_down_pose_model, process_mmdet_results)

        # mmpose seems not compatible with autocast fp16
        with autocast("cuda", dtype=torch.float32):
            mmdet_results = inference_detector(cond_model['det_model'], pose)
            # keep the person class bounding boxes.
            person_results = process_mmdet_results(mmdet_results, 1)

            # optional
            return_heatmap = False
            dataset = cond_model['pose_model'].cfg.data['test']['type']

            # e.g. use ('backbone', ) to return backbone feature
            output_layer_names = None
            pose_results, returned_outputs = inference_top_down_pose_model(
                cond_model['pose_model'],
                pose,
                person_results,
                bbox_thr=0.2,
                format='xyxy',
                dataset=dataset,
                dataset_info=None,
                return_heatmap=return_heatmap,
                outputs=output_layer_names)

        # show the results
        pose = imshow_keypoints(pose, pose_results, radius=2, thickness=2)
        pose = img2tensor(pose).unsqueeze(0) / 255.
        pose = pose.to(opt.device)
    else:
        raise NotImplementedError

    return pose


def get_cond_depth(opt, cond_image, cond_inp_type='image', cond_model=None):
    if isinstance(cond_image, str):
        depth = cv2.imread(cond_image)
    else:
        depth = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
    depth = resize_numpy_image(depth, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
    opt.H, opt.W = depth.shape[:2]
    if cond_inp_type == 'depth':
        depth = img2tensor(depth).unsqueeze(0) / 255.
        depth = depth.to(opt.device)
    elif cond_inp_type == 'image':
        depth = img2tensor(depth).unsqueeze(0) / 127.5 - 1.0
        depth = cond_model(depth.to(opt.device)).repeat(1, 3, 1, 1)
        depth -= torch.min(depth)
        depth /= torch.max(depth)
    else:
        raise NotImplementedError

    return depth


def get_cond_canny(opt, cond_image, cond_inp_type='image', cond_model=None):
    if isinstance(cond_image, str):
        canny = cv2.imread(cond_image)
    else:
        canny = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
    canny = resize_numpy_image(canny, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
    opt.H, opt.W = canny.shape[:2]
    if cond_inp_type == 'canny':
        canny = img2tensor(canny)[0:1].unsqueeze(0) / 255.
        canny = canny.to(opt.device)
    elif cond_inp_type == 'image':
        canny = cv2.Canny(canny, 100, 200)[..., None]
        canny = img2tensor(canny).unsqueeze(0) / 255.
        canny = canny.to(opt.device)
    else:
        raise NotImplementedError

    return canny


def get_cond_style(opt, cond_image, cond_inp_type='image', cond_model=None):
    assert cond_inp_type == 'image'
    if isinstance(cond_image, str):
        style = Image.open(cond_image)
    else:
        # numpy image to PIL image
        style = Image.fromarray(cond_image)

    style_for_clip = cond_model['processor'](images=style, return_tensors="pt")['pixel_values']
    style_feat = cond_model['clip_vision_model'](style_for_clip.to(opt.device))['last_hidden_state']

    return style_feat


def get_cond_color(opt, cond_image, cond_inp_type='image', cond_model=None):
    if isinstance(cond_image, str):
        color = cv2.imread(cond_image)
    else:
        color = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
    color = resize_numpy_image(color, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
    opt.H, opt.W = color.shape[:2]
    if cond_inp_type == 'image':
        color = cv2.resize(color, (opt.W//64, opt.H//64), interpolation=cv2.INTER_CUBIC)
        color = cv2.resize(color, (opt.W, opt.H), interpolation=cv2.INTER_NEAREST)
    color = img2tensor(color).unsqueeze(0) / 255.
    color = color.to(opt.device)
    return color


def get_cond_openpose(opt, cond_image, cond_inp_type='image', cond_model=None):
    if isinstance(cond_image, str):
        openpose_keypose = cv2.imread(cond_image)
    else:
        openpose_keypose = cv2.cvtColor(cond_image, cv2.COLOR_RGB2BGR)
    openpose_keypose = resize_numpy_image(
        openpose_keypose, max_resolution=opt.max_resolution, resize_short_edge=opt.resize_short_edge)
    opt.H, opt.W = openpose_keypose.shape[:2]
    if cond_inp_type == 'openpose':
        openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255.
        openpose_keypose = openpose_keypose.to(opt.device)
    elif cond_inp_type == 'image':
        with autocast('cuda', dtype=torch.float32):
            openpose_keypose = cond_model(openpose_keypose)
        openpose_keypose = img2tensor(openpose_keypose).unsqueeze(0) / 255.
        openpose_keypose = openpose_keypose.to(opt.device)

    else:
        raise NotImplementedError

    return openpose_keypose


def get_adapter_feature(inputs, adapters):
    ret_feat_map = None
    ret_feat_seq = None
    if not isinstance(inputs, list):
        inputs = [inputs]
        adapters = [adapters]

    for input, adapter in zip(inputs, adapters):
        cur_feature = adapter['model'](input)
        if isinstance(cur_feature, list):
            if ret_feat_map is None:
                ret_feat_map = list(map(lambda x: x * adapter['cond_weight'], cur_feature))
            else:
                ret_feat_map = list(map(lambda x, y: x + y * adapter['cond_weight'], ret_feat_map, cur_feature))
        else:
            if ret_feat_seq is None:
                ret_feat_seq = cur_feature
            else:
                ret_feat_seq = torch.cat([ret_feat_seq, cur_feature], dim=1)

    return ret_feat_map, ret_feat_seq