T2I-Adapter / train_depth.py
Adapter's picture
support composable adapter (#5)
b3478e4
import argparse
import logging
import os
import os.path as osp
import torch
from basicsr.utils import (get_env_info, get_root_logger, get_time_str,
scandir)
from basicsr.utils.options import copy_opt_file, dict2str
from omegaconf import OmegaConf
from ldm.data.dataset_depth import DepthDataset
from basicsr.utils.dist_util import get_dist_info, init_dist, master_only
from ldm.modules.encoders.adapter import Adapter
from ldm.util import load_model_from_config
@master_only
def mkdir_and_rename(path):
"""mkdirs. If path exists, rename it with timestamp and create a new one.
Args:
path (str): Folder path.
"""
if osp.exists(path):
new_name = path + '_archived_' + get_time_str()
print(f'Path already exists. Rename it to {new_name}', flush=True)
os.rename(path, new_name)
os.makedirs(path, exist_ok=True)
os.makedirs(osp.join(path, 'models'))
os.makedirs(osp.join(path, 'training_states'))
os.makedirs(osp.join(path, 'visualization'))
def load_resume_state(opt):
resume_state_path = None
if opt.auto_resume:
state_path = osp.join('experiments', opt.name, 'training_states')
if osp.isdir(state_path):
states = list(scandir(state_path, suffix='state', recursive=False, full_path=False))
if len(states) != 0:
states = [float(v.split('.state')[0]) for v in states]
resume_state_path = osp.join(state_path, f'{max(states):.0f}.state')
opt.resume_state_path = resume_state_path
if resume_state_path is None:
resume_state = None
else:
device_id = torch.cuda.current_device()
resume_state = torch.load(resume_state_path, map_location=lambda storage, loc: storage.cuda(device_id))
return resume_state
def parsr_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--bsize",
type=int,
default=8,
)
parser.add_argument(
"--epochs",
type=int,
default=10000,
)
parser.add_argument(
"--num_workers",
type=int,
default=8,
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--auto_resume",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--ckpt",
type=str,
default="models/sd-v1-4.ckpt",
help="path to checkpoint of model",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/sd-v1-train.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--name",
type=str,
default="train_depth",
help="experiment name",
)
parser.add_argument(
"--print_fq",
type=int,
default=100,
help="path to config which constructs model",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--sample_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--n_samples",
type=int,
default=1,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--gpus",
default=[0, 1, 2, 3],
help="gpu idx",
)
parser.add_argument(
'--local_rank',
default=0,
type=int,
help='node rank for distributed training'
)
parser.add_argument(
'--launcher',
default='pytorch',
type=str,
help='node rank for distributed training'
)
opt = parser.parse_args()
return opt
def main():
opt = parsr_args()
config = OmegaConf.load(f"{opt.config}")
# distributed setting
init_dist(opt.launcher)
torch.backends.cudnn.benchmark = True
device = 'cuda'
torch.cuda.set_device(opt.local_rank)
# dataset
train_dataset = DepthDataset('datasets/laion_depth_meta_v1.txt')
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.bsize,
shuffle=(train_sampler is None),
num_workers=opt.num_workers,
pin_memory=True,
sampler=train_sampler)
# stable diffusion
model = load_model_from_config(config, f"{opt.ckpt}").to(device)
# depth encoder
model_ad = Adapter(cin=3 * 64, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False).to(
device)
# to gpus
model_ad = torch.nn.parallel.DistributedDataParallel(
model_ad,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[opt.local_rank],
output_device=opt.local_rank)
# optimizer
params = list(model_ad.parameters())
optimizer = torch.optim.AdamW(params, lr=config['training']['lr'])
experiments_root = osp.join('experiments', opt.name)
# resume state
resume_state = load_resume_state(opt)
if resume_state is None:
mkdir_and_rename(experiments_root)
start_epoch = 0
current_iter = 0
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(config))
else:
# WARNING: should not use get_root_logger in the above codes, including the called functions
# Otherwise the logger will not be properly initialized
log_file = osp.join(experiments_root, f"train_{opt.name}_{get_time_str()}.log")
logger = get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
logger.info(get_env_info())
logger.info(dict2str(config))
resume_optimizers = resume_state['optimizers']
optimizer.load_state_dict(resume_optimizers)
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " f"iter: {resume_state['iter']}.")
start_epoch = resume_state['epoch']
current_iter = resume_state['iter']
# copy the yml file to the experiment root
copy_opt_file(opt.config, experiments_root)
# training
logger.info(f'Start training from epoch: {start_epoch}, iter: {current_iter}')
for epoch in range(start_epoch, opt.epochs):
train_dataloader.sampler.set_epoch(epoch)
# train
for _, data in enumerate(train_dataloader):
current_iter += 1
with torch.no_grad():
c = model.module.get_learned_conditioning(data['sentence'])
z = model.module.encode_first_stage((data['im'] * 2 - 1.).to(device))
z = model.module.get_first_stage_encoding(z)
optimizer.zero_grad()
model.zero_grad()
features_adapter = model_ad(data['depth'].to(device))
l_pixel, loss_dict = model(z, c=c, features_adapter=features_adapter)
l_pixel.backward()
optimizer.step()
if (current_iter + 1) % opt.print_fq == 0:
logger.info(loss_dict)
# save checkpoint
rank, _ = get_dist_info()
if (rank == 0) and ((current_iter + 1) % config['training']['save_freq'] == 0):
save_filename = f'model_ad_{current_iter + 1}.pth'
save_path = os.path.join(experiments_root, 'models', save_filename)
save_dict = {}
state_dict = model_ad.state_dict()
for key, param in state_dict.items():
if key.startswith('module.'): # remove unnecessary 'module.'
key = key[7:]
save_dict[key] = param.cpu()
torch.save(save_dict, save_path)
# save state
state = {'epoch': epoch, 'iter': current_iter + 1, 'optimizers': optimizer.state_dict()}
save_filename = f'{current_iter + 1}.state'
save_path = os.path.join(experiments_root, 'training_states', save_filename)
torch.save(state, save_path)
if __name__ == '__main__':
main()