Meta_mms_ASR / asr.py
Add-Vishnu's picture
Update asr.py
f61d07e
from transformers import Wav2Vec2ForCTC, AutoProcessor
import torch
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import time
import gradio as gr
import librosa
import numpy as np
model_id = "facebook/mms-1b-all"
processor = AutoProcessor.from_pretrained(model_id)
model = Wav2Vec2ForCTC.from_pretrained(model_id)
model_id_lid = "facebook/mms-lid-126"
processor_lid = AutoFeatureExtractor.from_pretrained(model_id_lid)
model_lid = Wav2Vec2ForSequenceClassification.from_pretrained(model_id_lid)
def resample_to_16k(audio, orig_sr):
y_resampled = librosa.resample(y=audio, orig_sr=orig_sr, target_sr = 16000)
return y_resampled
def transcribe(audio):
print(audio)
# audio = librosa.load(audio, sr=16_000, mono=True)[0]
# print("After loading: ",audio)
sr,y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
y_resampled = resample_to_16k(y, sr)
print("Without using librosa to load:",y_resampled)
# inputs = processor(audio, sampling_rate=16_000,return_tensors="pt")
inputs = processor(y_resampled, sampling_rate=16_000,return_tensors="pt")
with torch.no_grad():
tr_start_time = time.time()
outputs = model(**inputs).logits
tr_end_time = time.time()
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
return transcription,(tr_end_time-tr_start_time)
def detect_language(audio):
print(audio)
# audio = librosa.load(audio, sr=16_000, mono=True)[0]
sr,y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
y_resampled = resample_to_16k(y, sr)
print("Without using librosa to load:",y_resampled)
# inputs = processor(audio, sampling_rate=16_000,return_tensors="pt")
inputs = processor(y_resampled, sampling_rate=16_000,return_tensors="pt")
# print(audio)
# inputs_lid = processor_lid(audio, sampling_rate=16_000, return_tensors="pt")
with torch.no_grad():
start_time = time.time()
outputs_lid = model_lid(**inputs).logits
end_time = time.time()
# print(end_time-start_time," sec")
lang_id = torch.argmax(outputs_lid, dim=-1)[0].item()
detected_lang = model_lid.config.id2label[lang_id]
print(detected_lang)
return detected_lang, (end_time-start_time)
def transcribe_lang(audio,lang):
# audio = librosa.load(audio, sr=16_000, mono=True)[0]
sr,y = audio
y = y.astype(np.float32)
y /= np.max(np.abs(y))
y_resampled = resample_to_16k(y, sr)
print("Without using librosa to load:",y_resampled)
processor.tokenizer.set_target_lang(lang)
model.load_adapter(lang)
print(lang)
# inputs = processor(audio, sampling_rate=16_000,return_tensors="pt")
inputs = processor(y_resampled, sampling_rate=16_000,return_tensors="pt")
with torch.no_grad():
tr_start_time = time.time()
outputs = model(**inputs).logits
tr_end_time = time.time()
ids = torch.argmax(outputs, dim=-1)[0]
transcription = processor.decode(ids)
return transcription,(tr_end_time-tr_start_time)