test / dif.py
Adnan's picture
Upload dif.py
42fbf1f
import skimage.color
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import time
import collections
class dif:
def __init__(self, directory_A, directory_B=None, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False, delete=False, silent_del=False):
"""
directory_A (str)......folder path to search for duplicate/similar images
directory_B (str)......second folder path to search for duplicate/similar images
similarity (str)......."normal" = searches for duplicates, recommended setting, MSE < 200
"high" = serached for exact duplicates, extremly sensitive to details, MSE < 0.1
"low" = searches for similar images, MSE < 1000
px_size (int)..........recommended not to change default value
resize images to px_size height x width (in pixels) before being compared
the higher the pixel size, the more computational ressources and time required
sort_output (bool).....False = adds the duplicate images to output dictionary in the order they were found
True = sorts the duplicate images in the output dictionars alphabetically
show_output (bool).....False = omits the output and doesn't show found images
True = shows duplicate/similar images found in output
show_progress (bool)...False = shows where your lengthy processing currently is
delete (bool)..........! please use with care, as this cannot be undone
lower resolution duplicate images that were found are automatically deleted
silent_del (bool)......! please use with care, as this cannot be undone
True = skips the asking for user confirmation when deleting lower resolution duplicate images
will only work if "delete" AND "silent_del" are both == True
OUTPUT (set)...........a dictionary with the filename of the duplicate images
and a set of lower resultion images of all duplicates
"""
start_time = time.time()
print("DifPy process initializing...", end="\r")
if directory_B != None:
# process both directories
dif._process_directory(directory_A)
dif._process_directory(directory_B)
else:
# process one directory
dif._process_directory(directory_A)
directory_B = directory_A
dif._validate_parameters(sort_output, show_output, show_progress, similarity, px_size, delete, silent_del)
if directory_B == directory_A:
result, lower_quality, total = dif._search_one_dir(directory_A,
similarity, px_size,
sort_output, show_output, show_progress)
else:
result, lower_quality, total = dif._search_two_dirs(directory_A, directory_B,
similarity, px_size,
sort_output, show_output, show_progress)
if sort_output == True:
result = collections.OrderedDict(sorted(result.items()))
end_time = time.time()
time_elapsed = np.round(end_time - start_time, 4)
stats = dif._generate_stats(directory_A, directory_B,
time.localtime(start_time), time.localtime(end_time), time_elapsed,
similarity, total, len(result))
self.result = result
self.lower_quality = lower_quality
self.stats = stats
if len(result) == 1:
images = "image"
else:
images = "images"
print("Found", len(result), images, "with one or more duplicate/similar images in", time_elapsed, "seconds.")
if len(result) != 0:
if delete:
if not silent_del:
usr = input("Are you sure you want to delete all lower resolution duplicate images? \nThis cannot be undone. (y/n)")
if str(usr) == "y":
dif._delete_imgs(set(lower_quality))
else:
print("Image deletion canceled.")
else:
dif._delete_imgs(set(lower_quality))
# Function that searches one directory for duplicate/similar images
def _search_one_dir(directory_A, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False):
img_matrices_A, filenames_A = dif._create_imgs_matrix(directory_A, px_size)
total = len(img_matrices_A)
result = {}
lower_quality = []
ref = dif._map_similarity(similarity)
# find duplicates/similar images within one folder
for count_A, imageMatrix_A in enumerate(img_matrices_A):
if show_progress:
dif._show_progress(count_A, img_matrices_A)
for count_B, imageMatrix_B in enumerate(img_matrices_A):
if count_B > count_A and count_A != len(img_matrices_A):
rotations = 0
while rotations <= 3:
if rotations != 0:
imageMatrix_B = dif._rotate_img(imageMatrix_B)
err = dif._mse(imageMatrix_A, imageMatrix_B)
if err < ref:
if show_output:
dif._show_img_figs(imageMatrix_A, imageMatrix_B, err)
dif._show_file_info(str("..." + directory_A[-35:]) + "/" + filenames_A[count_A],
str("..." + directory_A[-35:]) + "/" + filenames_A[count_B])
if filenames_A[count_A] in result.keys():
result[filenames_A[count_A]]["duplicates"] = result[filenames_A[count_A]]["duplicates"] + [directory_A + "/" + filenames_A[count_B]]
else:
result[filenames_A[count_A]] = {"location": directory_A + "/" + filenames_A[count_A],
"duplicates": [directory_A + "/" + filenames_A[count_B]]}
high, low = dif._check_img_quality(directory_A, directory_A, filenames_A[count_A], filenames_A[count_B])
lower_quality.append(low)
break
else:
rotations += 1
if sort_output == True:
result = collections.OrderedDict(sorted(result.items()))
return result, lower_quality, total
# Function that searches two directories for duplicate/similar images
def _search_two_dirs(directory_A, directory_B=None, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False):
img_matrices_A, filenames_A = dif._create_imgs_matrix(directory_A, px_size)
img_matrices_B, filenames_B = dif._create_imgs_matrix(directory_B, px_size)
total = len(img_matrices_A) + len(img_matrices_B)
result = {}
lower_quality = []
ref = dif._map_similarity(similarity)
# find duplicates/similar images between two folders
for count_A, imageMatrix_A in enumerate(img_matrices_A):
if show_progress:
dif._show_progress(count_A, img_matrices_A)
for count_B, imageMatrix_B in enumerate(img_matrices_B):
rotations = 0
while rotations <= 3:
if rotations != 0:
imageMatrix_B = dif._rotate_img(imageMatrix_B)
err = dif._mse(imageMatrix_A, imageMatrix_B)
if err < ref:
if show_output:
dif._show_img_figs(imageMatrix_A, imageMatrix_B, err)
dif._show_file_info(str("..." + directory_A[-35:]) + "/" + filenames_A[count_A],
str("..." + directory_B[-35:]) + "/" + filenames_B[count_B])
if filenames_A[count_A] in result.keys():
result[filenames_A[count_A]]["duplicates"] = result[filenames_A[count_A]]["duplicates"] + [directory_B + "/" + filenames_B[count_B]]
else:
result[filenames_A[count_A]] = {"location": directory_A + "/" + filenames_A[count_A],
"duplicates": [directory_B + "/" + filenames_B[count_B]]}
try:
high, low = dif._check_img_quality(directory_A, directory_B, filenames_A[count_A], filenames_B[count_B])
lower_quality.append(low)
except:
pass
break
else:
rotations += 1
if sort_output == True:
result = collections.OrderedDict(sorted(result.items()))
return result, lower_quality, total
# Function that processes the directories that were input as parameters
def _process_directory(directory):
# check if directories are valid
directory += os.sep
if not os.path.isdir(directory):
raise FileNotFoundError(f"Directory: " + directory + " does not exist")
return directory
# Function that validates the input parameters of DifPy
def _validate_parameters(sort_output, show_output, show_progress, similarity, px_size, delete, silent_del):
# validate the parameters of the function
if sort_output != True and sort_output != False:
raise ValueError('Invalid value for "sort_output" parameter.')
if show_output != True and show_output != False:
raise ValueError('Invalid value for "show_output" parameter.')
if show_progress != True and show_progress != False:
raise ValueError('Invalid value for "show_progress" parameter.')
if similarity not in ["low", "normal", "high"]:
raise ValueError('Invalid value for "similarity" parameter.')
if px_size < 10 or px_size > 5000:
raise ValueError('Invalid value for "px_size" parameter.')
if delete != True and delete != False:
raise ValueError('Invalid value for "delete" parameter.')
if silent_del != True and silent_del != False:
raise ValueError('Invalid value for "silent_del" parameter.')
# Function that creates a list of matrices for each image found in the folders
def _create_imgs_matrix(directory, px_size):
directory = dif._process_directory(directory)
img_filenames = []
# create list of all files in directory
folder_files = [filename for filename in os.listdir(directory)]
# create images matrix
imgs_matrix = []
for filename in folder_files:
path = os.path.join(directory, filename)
# check if the file is not a folder
if not os.path.isdir(path):
try:
img = cv2.imdecode(np.fromfile(
path, dtype=np.uint8), cv2.IMREAD_UNCHANGED)
if type(img) == np.ndarray:
img = img[..., 0:3]
img = cv2.resize(img, dsize=(
px_size, px_size), interpolation=cv2.INTER_CUBIC)
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
imgs_matrix.append(img)
img_filenames.append(filename)
except:
pass
return imgs_matrix, img_filenames
# Function that maps the similarity grade to the respective MSE value
def _map_similarity(similarity):
if similarity == "low":
ref = 1000
# search for exact duplicate images, extremly sensitive, MSE < 0.1
elif similarity == "high":
ref = 0.1
# normal, search for duplicates, recommended, MSE < 200
else:
ref = 200
return ref
# Function that calulates the mean squared error (mse) between two image matrices
def _mse(imageA, imageB):
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
err /= float(imageA.shape[0] * imageA.shape[1])
return err
# Function that plots two compared image files and their mse
def _show_img_figs(imageA, imageB, err):
fig = plt.figure()
plt.suptitle("MSE: %.2f" % (err))
# plot first image
ax = fig.add_subplot(1, 2, 1)
plt.imshow(imageA, cmap=plt.cm.gray)
plt.axis("off")
# plot second image
ax = fig.add_subplot(1, 2, 2)
plt.imshow(imageB, cmap=plt.cm.gray)
plt.axis("off")
# show the images
plt.show()
# Function for printing filename info of plotted image files
def _show_file_info(imageA, imageB):
print("""Duplicate files:\n{} and \n{}""".format(imageA, imageB))
# Function that displays a progress bar during the search
def _show_progress(count, img_matrix):
if count+1 == len(img_matrix):
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count, len(img_matrix), count/len(img_matrix)), end="\r")
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count+1, len(img_matrix), (count+1)/len(img_matrix)))
else:
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count, len(img_matrix), count/len(img_matrix)), end="\r")
# Function for rotating an image matrix by a 90 degree angle
def _rotate_img(image):
image = np.rot90(image, k=1, axes=(0, 1))
return image
# Function for checking the quality of compared images, appends the lower quality image to the list
def _check_img_quality(directoryA, directoryB, imageA, imageB):
dirA = dif._process_directory(directoryA)
dirB = dif._process_directory(directoryB)
size_imgA = os.stat(os.path.join(dirA, imageA)).st_size
size_imgB = os.stat(os.path.join(dirB, imageB)).st_size
if size_imgA >= size_imgB:
return directoryA + "/" + imageA, directoryB + "/" + imageB
else:
return directoryB + "/" + imageB, directoryA + "/" + imageA
# Function that generates a dictionary for statistics around the completed DifPy process
def _generate_stats(directoryA, directoryB, start_time, end_time, time_elapsed, similarity, total_searched, total_found):
stats = {}
stats["directory_1"] = directoryA
if directoryB != None:
stats["directory_2"] = directoryB
stats["duration"] = {"start_date": time.strftime("%Y-%m-%d", start_time),
"start_time": time.strftime("%H:%M:%S", start_time),
"end_date": time.strftime("%Y-%m-%d", end_time),
"end_time": time.strftime("%H:%M:%S", end_time),
"seconds_elapsed": time_elapsed}
stats["similarity_grade"] = similarity
stats["similarity_mse"] = dif._map_similarity(similarity)
stats["total_images_searched"] = total_searched
stats["total_images_found"] = total_found
return stats
# Function for deleting the lower quality images that were found after the search
def _delete_imgs(lower_quality_set):
deleted = 0
for file in lower_quality_set:
print("\nDeletion in progress...", end="\r")
try:
os.remove(file)
print("Deleted file:", file, end="\r")
deleted += 1
except:
print("Could not delete file:", file, end="\r")
print("\n***\nDeleted", deleted, "images.")