|
import skimage.color |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import cv2 |
|
import os |
|
import time |
|
import collections |
|
|
|
class dif: |
|
|
|
def __init__(self, directory_A, directory_B=None, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False, delete=False, silent_del=False): |
|
""" |
|
directory_A (str)......folder path to search for duplicate/similar images |
|
directory_B (str)......second folder path to search for duplicate/similar images |
|
similarity (str)......."normal" = searches for duplicates, recommended setting, MSE < 200 |
|
"high" = serached for exact duplicates, extremly sensitive to details, MSE < 0.1 |
|
"low" = searches for similar images, MSE < 1000 |
|
px_size (int)..........recommended not to change default value |
|
resize images to px_size height x width (in pixels) before being compared |
|
the higher the pixel size, the more computational ressources and time required |
|
sort_output (bool).....False = adds the duplicate images to output dictionary in the order they were found |
|
True = sorts the duplicate images in the output dictionars alphabetically |
|
show_output (bool).....False = omits the output and doesn't show found images |
|
True = shows duplicate/similar images found in output |
|
show_progress (bool)...False = shows where your lengthy processing currently is |
|
delete (bool)..........! please use with care, as this cannot be undone |
|
lower resolution duplicate images that were found are automatically deleted |
|
silent_del (bool)......! please use with care, as this cannot be undone |
|
True = skips the asking for user confirmation when deleting lower resolution duplicate images |
|
will only work if "delete" AND "silent_del" are both == True |
|
|
|
OUTPUT (set)...........a dictionary with the filename of the duplicate images |
|
and a set of lower resultion images of all duplicates |
|
""" |
|
start_time = time.time() |
|
print("DifPy process initializing...", end="\r") |
|
|
|
if directory_B != None: |
|
|
|
dif._process_directory(directory_A) |
|
dif._process_directory(directory_B) |
|
else: |
|
|
|
dif._process_directory(directory_A) |
|
directory_B = directory_A |
|
|
|
dif._validate_parameters(sort_output, show_output, show_progress, similarity, px_size, delete, silent_del) |
|
|
|
if directory_B == directory_A: |
|
result, lower_quality, total = dif._search_one_dir(directory_A, |
|
similarity, px_size, |
|
sort_output, show_output, show_progress) |
|
else: |
|
result, lower_quality, total = dif._search_two_dirs(directory_A, directory_B, |
|
similarity, px_size, |
|
sort_output, show_output, show_progress) |
|
if sort_output == True: |
|
result = collections.OrderedDict(sorted(result.items())) |
|
|
|
end_time = time.time() |
|
time_elapsed = np.round(end_time - start_time, 4) |
|
stats = dif._generate_stats(directory_A, directory_B, |
|
time.localtime(start_time), time.localtime(end_time), time_elapsed, |
|
similarity, total, len(result)) |
|
|
|
self.result = result |
|
self.lower_quality = lower_quality |
|
self.stats = stats |
|
|
|
if len(result) == 1: |
|
images = "image" |
|
else: |
|
images = "images" |
|
print("Found", len(result), images, "with one or more duplicate/similar images in", time_elapsed, "seconds.") |
|
|
|
if len(result) != 0: |
|
if delete: |
|
if not silent_del: |
|
usr = input("Are you sure you want to delete all lower resolution duplicate images? \nThis cannot be undone. (y/n)") |
|
if str(usr) == "y": |
|
dif._delete_imgs(set(lower_quality)) |
|
else: |
|
print("Image deletion canceled.") |
|
else: |
|
dif._delete_imgs(set(lower_quality)) |
|
|
|
|
|
def _search_one_dir(directory_A, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False): |
|
|
|
img_matrices_A, filenames_A = dif._create_imgs_matrix(directory_A, px_size) |
|
total = len(img_matrices_A) |
|
result = {} |
|
lower_quality = [] |
|
|
|
ref = dif._map_similarity(similarity) |
|
|
|
|
|
for count_A, imageMatrix_A in enumerate(img_matrices_A): |
|
if show_progress: |
|
dif._show_progress(count_A, img_matrices_A) |
|
for count_B, imageMatrix_B in enumerate(img_matrices_A): |
|
if count_B > count_A and count_A != len(img_matrices_A): |
|
rotations = 0 |
|
while rotations <= 3: |
|
if rotations != 0: |
|
imageMatrix_B = dif._rotate_img(imageMatrix_B) |
|
|
|
err = dif._mse(imageMatrix_A, imageMatrix_B) |
|
if err < ref: |
|
if show_output: |
|
dif._show_img_figs(imageMatrix_A, imageMatrix_B, err) |
|
dif._show_file_info(str("..." + directory_A[-35:]) + "/" + filenames_A[count_A], |
|
str("..." + directory_A[-35:]) + "/" + filenames_A[count_B]) |
|
if filenames_A[count_A] in result.keys(): |
|
result[filenames_A[count_A]]["duplicates"] = result[filenames_A[count_A]]["duplicates"] + [directory_A + "/" + filenames_A[count_B]] |
|
else: |
|
result[filenames_A[count_A]] = {"location": directory_A + "/" + filenames_A[count_A], |
|
"duplicates": [directory_A + "/" + filenames_A[count_B]]} |
|
high, low = dif._check_img_quality(directory_A, directory_A, filenames_A[count_A], filenames_A[count_B]) |
|
lower_quality.append(low) |
|
break |
|
else: |
|
rotations += 1 |
|
|
|
if sort_output == True: |
|
result = collections.OrderedDict(sorted(result.items())) |
|
return result, lower_quality, total |
|
|
|
|
|
def _search_two_dirs(directory_A, directory_B=None, similarity="normal", px_size=50, sort_output=False, show_output=False, show_progress=False): |
|
|
|
img_matrices_A, filenames_A = dif._create_imgs_matrix(directory_A, px_size) |
|
img_matrices_B, filenames_B = dif._create_imgs_matrix(directory_B, px_size) |
|
total = len(img_matrices_A) + len(img_matrices_B) |
|
result = {} |
|
lower_quality = [] |
|
|
|
ref = dif._map_similarity(similarity) |
|
|
|
|
|
for count_A, imageMatrix_A in enumerate(img_matrices_A): |
|
if show_progress: |
|
dif._show_progress(count_A, img_matrices_A) |
|
for count_B, imageMatrix_B in enumerate(img_matrices_B): |
|
rotations = 0 |
|
while rotations <= 3: |
|
if rotations != 0: |
|
imageMatrix_B = dif._rotate_img(imageMatrix_B) |
|
|
|
err = dif._mse(imageMatrix_A, imageMatrix_B) |
|
if err < ref: |
|
if show_output: |
|
dif._show_img_figs(imageMatrix_A, imageMatrix_B, err) |
|
dif._show_file_info(str("..." + directory_A[-35:]) + "/" + filenames_A[count_A], |
|
str("..." + directory_B[-35:]) + "/" + filenames_B[count_B]) |
|
if filenames_A[count_A] in result.keys(): |
|
result[filenames_A[count_A]]["duplicates"] = result[filenames_A[count_A]]["duplicates"] + [directory_B + "/" + filenames_B[count_B]] |
|
else: |
|
result[filenames_A[count_A]] = {"location": directory_A + "/" + filenames_A[count_A], |
|
"duplicates": [directory_B + "/" + filenames_B[count_B]]} |
|
try: |
|
high, low = dif._check_img_quality(directory_A, directory_B, filenames_A[count_A], filenames_B[count_B]) |
|
lower_quality.append(low) |
|
except: |
|
pass |
|
break |
|
else: |
|
rotations += 1 |
|
|
|
if sort_output == True: |
|
result = collections.OrderedDict(sorted(result.items())) |
|
|
|
return result, lower_quality, total |
|
|
|
|
|
def _process_directory(directory): |
|
|
|
directory += os.sep |
|
if not os.path.isdir(directory): |
|
raise FileNotFoundError(f"Directory: " + directory + " does not exist") |
|
return directory |
|
|
|
|
|
def _validate_parameters(sort_output, show_output, show_progress, similarity, px_size, delete, silent_del): |
|
|
|
if sort_output != True and sort_output != False: |
|
raise ValueError('Invalid value for "sort_output" parameter.') |
|
if show_output != True and show_output != False: |
|
raise ValueError('Invalid value for "show_output" parameter.') |
|
if show_progress != True and show_progress != False: |
|
raise ValueError('Invalid value for "show_progress" parameter.') |
|
if similarity not in ["low", "normal", "high"]: |
|
raise ValueError('Invalid value for "similarity" parameter.') |
|
if px_size < 10 or px_size > 5000: |
|
raise ValueError('Invalid value for "px_size" parameter.') |
|
if delete != True and delete != False: |
|
raise ValueError('Invalid value for "delete" parameter.') |
|
if silent_del != True and silent_del != False: |
|
raise ValueError('Invalid value for "silent_del" parameter.') |
|
|
|
|
|
def _create_imgs_matrix(directory, px_size): |
|
directory = dif._process_directory(directory) |
|
img_filenames = [] |
|
|
|
folder_files = [filename for filename in os.listdir(directory)] |
|
|
|
|
|
imgs_matrix = [] |
|
for filename in folder_files: |
|
path = os.path.join(directory, filename) |
|
|
|
if not os.path.isdir(path): |
|
try: |
|
img = cv2.imdecode(np.fromfile( |
|
path, dtype=np.uint8), cv2.IMREAD_UNCHANGED) |
|
if type(img) == np.ndarray: |
|
img = img[..., 0:3] |
|
img = cv2.resize(img, dsize=( |
|
px_size, px_size), interpolation=cv2.INTER_CUBIC) |
|
|
|
if len(img.shape) == 2: |
|
img = skimage.color.gray2rgb(img) |
|
imgs_matrix.append(img) |
|
img_filenames.append(filename) |
|
except: |
|
pass |
|
return imgs_matrix, img_filenames |
|
|
|
|
|
def _map_similarity(similarity): |
|
if similarity == "low": |
|
ref = 1000 |
|
|
|
elif similarity == "high": |
|
ref = 0.1 |
|
|
|
else: |
|
ref = 200 |
|
return ref |
|
|
|
|
|
def _mse(imageA, imageB): |
|
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2) |
|
err /= float(imageA.shape[0] * imageA.shape[1]) |
|
return err |
|
|
|
|
|
def _show_img_figs(imageA, imageB, err): |
|
fig = plt.figure() |
|
plt.suptitle("MSE: %.2f" % (err)) |
|
|
|
ax = fig.add_subplot(1, 2, 1) |
|
plt.imshow(imageA, cmap=plt.cm.gray) |
|
plt.axis("off") |
|
|
|
ax = fig.add_subplot(1, 2, 2) |
|
plt.imshow(imageB, cmap=plt.cm.gray) |
|
plt.axis("off") |
|
|
|
plt.show() |
|
|
|
|
|
def _show_file_info(imageA, imageB): |
|
print("""Duplicate files:\n{} and \n{}""".format(imageA, imageB)) |
|
|
|
|
|
def _show_progress(count, img_matrix): |
|
if count+1 == len(img_matrix): |
|
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count, len(img_matrix), count/len(img_matrix)), end="\r") |
|
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count+1, len(img_matrix), (count+1)/len(img_matrix))) |
|
else: |
|
print("DifPy processing images: [{}/{}] [{:.0%}]".format(count, len(img_matrix), count/len(img_matrix)), end="\r") |
|
|
|
|
|
def _rotate_img(image): |
|
image = np.rot90(image, k=1, axes=(0, 1)) |
|
return image |
|
|
|
|
|
def _check_img_quality(directoryA, directoryB, imageA, imageB): |
|
dirA = dif._process_directory(directoryA) |
|
dirB = dif._process_directory(directoryB) |
|
size_imgA = os.stat(os.path.join(dirA, imageA)).st_size |
|
size_imgB = os.stat(os.path.join(dirB, imageB)).st_size |
|
if size_imgA >= size_imgB: |
|
return directoryA + "/" + imageA, directoryB + "/" + imageB |
|
else: |
|
return directoryB + "/" + imageB, directoryA + "/" + imageA |
|
|
|
|
|
def _generate_stats(directoryA, directoryB, start_time, end_time, time_elapsed, similarity, total_searched, total_found): |
|
stats = {} |
|
stats["directory_1"] = directoryA |
|
if directoryB != None: |
|
stats["directory_2"] = directoryB |
|
stats["duration"] = {"start_date": time.strftime("%Y-%m-%d", start_time), |
|
"start_time": time.strftime("%H:%M:%S", start_time), |
|
"end_date": time.strftime("%Y-%m-%d", end_time), |
|
"end_time": time.strftime("%H:%M:%S", end_time), |
|
"seconds_elapsed": time_elapsed} |
|
stats["similarity_grade"] = similarity |
|
stats["similarity_mse"] = dif._map_similarity(similarity) |
|
stats["total_images_searched"] = total_searched |
|
stats["total_images_found"] = total_found |
|
return stats |
|
|
|
|
|
def _delete_imgs(lower_quality_set): |
|
deleted = 0 |
|
for file in lower_quality_set: |
|
print("\nDeletion in progress...", end="\r") |
|
try: |
|
os.remove(file) |
|
print("Deleted file:", file, end="\r") |
|
deleted += 1 |
|
except: |
|
print("Could not delete file:", file, end="\r") |
|
print("\n***\nDeleted", deleted, "images.") |