Spaces:
Running
on
Zero
Running
on
Zero
AdrienB134
commited on
Commit
·
8573be6
1
Parent(s):
e030870
bgfs
Browse files
app.py
CHANGED
@@ -13,7 +13,8 @@ from pdf2image import convert_from_path
|
|
13 |
from PIL import Image
|
14 |
from torch.utils.data import DataLoader
|
15 |
from tqdm import tqdm
|
16 |
-
from transformers import
|
|
|
17 |
import re
|
18 |
import time
|
19 |
from PIL import Image
|
@@ -28,76 +29,70 @@ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENT
|
|
28 |
|
29 |
@spaces.GPU
|
30 |
def model_inference(
|
31 |
-
images, text,
|
32 |
-
repetition_penalty=1.2, top_p=0.8
|
33 |
):
|
34 |
-
|
35 |
-
id_processor = AutoProcessor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
|
36 |
-
|
37 |
-
id_model = Idefics3ForConditionalGeneration.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3",
|
38 |
-
torch_dtype=torch.bfloat16,
|
39 |
-
#_attn_implementation="flash_attention_2"
|
40 |
-
).to("cuda")
|
41 |
-
|
42 |
-
BAD_WORDS_IDS = id_processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
43 |
-
EOS_WORDS_IDS = [id_processor.tokenizer.eos_token_id]
|
44 |
print(type(images))
|
45 |
print(images[0])
|
46 |
images = Image.open(images[0][0])
|
47 |
print(images)
|
48 |
print(type(images))
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
|
|
|
|
|
|
60 |
{
|
61 |
-
"
|
62 |
-
"
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
if assistant_prefix:
|
69 |
-
text = f"{assistant_prefix} {text}"
|
70 |
-
|
71 |
-
|
72 |
-
prompt = id_processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
73 |
-
inputs = id_processor(text=prompt, images=[images], return_tensors="pt")
|
74 |
-
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
75 |
-
|
76 |
-
generation_args = {
|
77 |
-
"max_new_tokens": max_new_tokens,
|
78 |
-
"repetition_penalty": repetition_penalty,
|
79 |
-
|
80 |
-
}
|
81 |
-
|
82 |
-
assert decoding_strategy in [
|
83 |
-
"Greedy",
|
84 |
-
"Top P Sampling",
|
85 |
]
|
86 |
-
if decoding_strategy == "Greedy":
|
87 |
-
generation_args["do_sample"] = False
|
88 |
-
elif decoding_strategy == "Top P Sampling":
|
89 |
-
generation_args["temperature"] = temperature
|
90 |
-
generation_args["do_sample"] = True
|
91 |
-
generation_args["top_p"] = top_p
|
92 |
-
|
93 |
-
|
94 |
-
generation_args.update(inputs)
|
95 |
|
96 |
-
#
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
|
103 |
|
|
|
13 |
from PIL import Image
|
14 |
from torch.utils.data import DataLoader
|
15 |
from tqdm import tqdm
|
16 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
17 |
+
from qwen_vl_utils import process_vision_info
|
18 |
import re
|
19 |
import time
|
20 |
from PIL import Image
|
|
|
29 |
|
30 |
@spaces.GPU
|
31 |
def model_inference(
|
32 |
+
images, text,
|
|
|
33 |
):
|
34 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
print(type(images))
|
36 |
print(images[0])
|
37 |
images = Image.open(images[0][0])
|
38 |
print(images)
|
39 |
print(type(images))
|
40 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
41 |
+
# "Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"
|
42 |
+
# )
|
43 |
+
|
44 |
+
#We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
|
45 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
46 |
+
"Qwen/Qwen2-VL-7B-Instruct",
|
47 |
+
torch_dtype=torch.bfloat16,
|
48 |
+
attn_implementation="flash_attention_2",
|
49 |
+
device_map="auto",
|
50 |
+
)
|
51 |
|
52 |
+
# default processer
|
53 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
54 |
|
55 |
+
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
56 |
+
# min_pixels = 256*28*28
|
57 |
+
# max_pixels = 1280*28*28
|
58 |
+
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
59 |
|
60 |
+
messages = [
|
61 |
+
{
|
62 |
+
"role": "user",
|
63 |
+
"content": [
|
64 |
{
|
65 |
+
"type": "image",
|
66 |
+
"image": images,
|
67 |
+
},
|
68 |
+
{"type": "text", "text": text},
|
69 |
+
],
|
70 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
# Preparation for inference
|
74 |
+
text = processor.apply_chat_template(
|
75 |
+
messages, tokenize=False, add_generation_prompt=True
|
76 |
+
)
|
77 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
78 |
+
inputs = processor(
|
79 |
+
text=[text],
|
80 |
+
images=image_inputs,
|
81 |
+
videos=video_inputs,
|
82 |
+
padding=True,
|
83 |
+
return_tensors="pt",
|
84 |
+
)
|
85 |
+
inputs = inputs.to("cuda")
|
86 |
|
87 |
+
# Inference: Generation of the output
|
88 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
89 |
+
generated_ids_trimmed = [
|
90 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
91 |
+
]
|
92 |
+
output_text = processor.batch_decode(
|
93 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
94 |
+
)
|
95 |
+
return output_text[0]
|
96 |
|
97 |
|
98 |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info
ADDED
File without changes
|