File size: 4,644 Bytes
1a517f1
a187193
592ad8f
a187193
17ba373
592ad8f
 
a187193
b31bef1
a187193
 
1a517f1
 
592ad8f
 
b31bef1
a187193
 
 
 
 
 
 
592ad8f
a187193
 
ddc67bf
948e2eb
a187193
 
17ba373
 
 
 
 
 
 
 
948e2eb
 
 
 
 
 
 
 
0502f94
948e2eb
0502f94
 
a187193
592ad8f
948e2eb
0502f94
948e2eb
a187193
17ba373
a187193
 
948e2eb
0502f94
a187193
0502f94
ddc67bf
592ad8f
 
a187193
592ad8f
 
a187193
17ba373
a187193
 
592ad8f
 
a187193
592ad8f
17ba373
592ad8f
 
1c8a6bd
17ba373
1c8a6bd
 
948e2eb
a187193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592ad8f
 
 
a187193
 
 
592ad8f
a187193
 
 
592ad8f
ddc67bf
592ad8f
 
17ba373
a187193
 
17ba373
592ad8f
a187193
592ad8f
 
1a517f1
17ba373
 
592ad8f
1a517f1
592ad8f
 
 
948e2eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import warnings
import torch
import gc
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig, AutoConfig
from PIL import Image
import gradio as gr
from huggingface_hub import login

warnings.filterwarnings('ignore')
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

# Global variables
model = None
processor = None

if torch.cuda.is_available():
    torch.cuda.empty_cache()
    gc.collect()
    print("เคลียร์ CUDA cache เรียบร้อยแล้ว")

def load_model_and_processor():
    """โหลดโมเดลและ processor"""
    global model, processor
    print("กำลังโหลดโมเดลและ processor...")
    
    try:
        base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
        hub_model_path = "Aekanun/thai-handwriting-llm"
        
        # Load and set config
        config = AutoConfig.from_pretrained(
            hub_model_path,
            trust_remote_code=True,
            token=os.environ.get('HUGGING_FACE_HUB_TOKEN')
        )
        config.model_type = "vision2seq"

        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16
        )
        
        # โหลด processor จาก base model
        print("Loading processor...")
        processor = AutoProcessor.from_pretrained(
            base_model_path, 
            token=os.environ.get('HUGGING_FACE_HUB_TOKEN')
        )
        
        # โหลดโมเดลจาก Hub
        print("Loading model...")
        model = AutoModelForVision2Seq.from_pretrained(
            hub_model_path,
            config=config,
            device_map="auto",
            torch_dtype=torch.bfloat16,
            quantization_config=bnb_config,
            token=os.environ.get('HUGGING_FACE_HUB_TOKEN')
        )
        print("Model loaded successfully!")
        
        return True
    except Exception as e:
        print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
        return False

def process_handwriting(image):
    """ฟังก์ชันสำหรับ Gradio interface"""
    global model, processor
    
    if image is None:
        return "กรุณาอัพโหลดรูปภาพ"
    
    try:
        # Ensure image is in PIL format
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
            
        # Convert to RGB if needed
        if image.mode != "RGB":
            image = image.convert("RGB")

        prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""

        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": prompt},
                    {"type": "image", "image": image}
                ],
            }
        ]

        text = processor.apply_chat_template(messages, tokenize=False)
        inputs = processor(text=text, images=image, return_tensors="pt")
        inputs = {k: v.to(model.device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=256,
                do_sample=False,
                pad_token_id=processor.tokenizer.pad_token_id
            )

        transcription = processor.decode(outputs[0], skip_special_tokens=True)
        return transcription.strip()
        
    except Exception as e:
        return f"เกิดข้อผิดพลาด: {str(e)}"

# Initialize application
print("กำลังเริ่มต้นแอปพลิเคชัน...")
if load_model_and_processor():
    # Create Gradio interface
    demo = gr.Interface(
        fn=process_handwriting,
        inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
        outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
        title="Thai Handwriting Recognition",
        description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ",
        examples=[["example1.jpg"], ["example2.jpg"]]
    )

    if __name__ == "__main__":
        demo.launch()
else:
    print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้")