Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,905 Bytes
1a517f1 592ad8f 78744e1 592ad8f b31bef1 78744e1 a187193 78744e1 a187193 78744e1 a187193 78744e1 592ad8f 78744e1 a187193 78744e1 069ee6d 78744e1 069ee6d 78744e1 592ad8f 78744e1 1a517f1 78744e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
import torch
from transformers import AutoModelForVision2Seq, AutoProcessor
from PIL import Image
import gradio as gr
# Login to Hugging Face Hub
from huggingface_hub import login
token = os.environ.get('HUGGING_FACE_HUB_TOKEN')
if token:
login(token=token)
def load_model():
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
hub_model_path = "Aekanun/thai-handwriting-llm"
processor = AutoProcessor.from_pretrained(base_model_path, token=token)
model = AutoModelForVision2Seq.from_pretrained(hub_model_path, token=token)
return model, processor
model, processor = load_model()
def process_image(image):
if image is None:
return "กรุณาอัพโหลดรูปภาพ"
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
if image.mode != "RGB":
image = image.convert("RGB")
prompt = "Transcribe the Thai handwritten text from the provided image.\nOnly return the transcription in Thai language."
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
],
}
]
text = processor.apply_chat_template(messages, tokenize=False)
inputs = processor(text=text, images=image, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.pad_token_id
)
transcription = processor.decode(outputs[0], skip_special_tokens=True)
return transcription.strip()
demo = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs="text",
title="Thai Handwriting OCR",
)
if __name__ == "__main__":
demo.launch() |