Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,181 Bytes
1a517f1 a187193 592ad8f a187193 948e2eb 592ad8f a187193 b31bef1 948e2eb a187193 1a517f1 592ad8f b31bef1 948e2eb a187193 592ad8f a187193 ddc67bf 948e2eb a187193 948e2eb a187193 592ad8f 948e2eb a187193 948e2eb a187193 948e2eb 5eb28b7 948e2eb a187193 948e2eb ddc67bf 592ad8f a187193 592ad8f a187193 592ad8f a187193 592ad8f 1a517f1 592ad8f 1c8a6bd 948e2eb a187193 948e2eb a187193 948e2eb a187193 948e2eb 592ad8f a187193 592ad8f a187193 948e2eb a187193 592ad8f ddc67bf 592ad8f a187193 1a517f1 592ad8f a187193 592ad8f 1a517f1 592ad8f 1a517f1 592ad8f 948e2eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import warnings
import torch
import gc
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
from PIL import Image
import gradio as gr
from huggingface_hub import login
# ตั้งค่าพื้นฐาน
warnings.filterwarnings('ignore')
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Global variables
model = None
processor = None
# เคลียร์ CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print("เคลียร์ CUDA cache เรียบร้อยแล้ว")
# Login to Hugging Face Hub
if 'HUGGING_FACE_HUB_TOKEN' in os.environ:
print("กำลังเข้าสู่ระบบ Hugging Face Hub...")
login(token=os.environ['HUGGING_FACE_HUB_TOKEN'])
else:
print("คำเตือน: ไม่พบ HUGGING_FACE_HUB_TOKEN")
def load_model_and_processor():
"""โหลดโมเดลและ processor"""
global model, processor
print("กำลังโหลดโมเดลและ processor...")
try:
# กำหนด paths
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
hub_model_path = "Aekanun/thai-handwriting-llm"
# ตั้งค่า BitsAndBytes
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# โหลด processor จาก base model
processor = AutoProcessor.from_pretrained(
base_model_path,
use_auth_token=os.environ.get('HUGGING_FACE_HUB_TOKEN')
)
# โหลดโมเดลจาก Hub
print("กำลังโหลดโมเดลจาก Hub...")
model = AutoModelForVision2Seq.from_pretrained(
hub_model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config,
trust_remote_code=True,
use_auth_token=os.environ.get('HUGGING_FACE_HUB_TOKEN')
)
print("โหลดโมเดลจาก Hub สำเร็จ!")
return True
except Exception as e:
print(f"เกิดข้อผิดพลาดในการโหลดโมเดล: {str(e)}")
return False
def process_handwriting(image):
"""ฟังก์ชันสำหรับ Gradio interface"""
global model, processor
if image is None:
return "กรุณาอัพโหลดรูปภาพ"
try:
# Ensure image is in PIL format
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
# Convert to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
# สร้าง prompt สำหรับการถอดความ
prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""
# สร้าง input สำหรับโมเดล
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
],
}
]
# สร้าง inputs โดยตรงจาก processor
text = processor.apply_chat_template(messages, tokenize=False)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
# ทำนาย
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.pad_token_id
)
# แปลงผลลัพธ์
transcription = processor.decode(outputs[0], skip_special_tokens=True)
return transcription.strip()
except Exception as e:
return f"เกิดข้อผิดพลาด: {str(e)}"
# Initialize application
print("กำลังเริ่มต้นแอปพลิเคชัน...")
if load_model_and_processor():
# Create Gradio interface
demo = gr.Interface(
fn=process_handwriting,
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
title="Thai Handwriting Recognition",
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ",
examples=[["example1.jpg"], ["example2.jpg"]]
)
if __name__ == "__main__":
demo.launch()
else:
print("ไม่สามารถเริ่มต้นแอปพลิเคชันได้") |