Aekanun's picture
fixed and run app.py
592ad8f
raw
history blame
3.3 kB
import torch
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
from PIL import Image
import gradio as gr
# Global variables for model and processor
model = None
processor = None
def load_model_and_processor():
global model, processor
try:
model_path = "Aekanun/thai-handwriting-llm"
base_model_path = "meta-llama/Llama-3.2-11B-Vision-Instruct"
print("Loading processor...")
processor = AutoProcessor.from_pretrained(base_model_path)
print("Loading model...")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForVision2Seq.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config
)
return True
except Exception as e:
print(f"Error loading model: {str(e)}")
return False
def process_handwriting(image):
global model, processor
if image is None:
return "กรุณาอัพโหลดรูปภาพ"
try:
if not isinstance(image, Image.Image):
image = Image.fromarray(image)
prompt = """Transcribe the Thai handwritten text from the provided image.
Only return the transcription in Thai language."""
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image", "image": image}
],
}
]
text = processor.apply_chat_template(messages, tokenize=False)
inputs = processor(text=text, images=image, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=256,
do_sample=False,
pad_token_id=processor.tokenizer.pad_token_id
)
transcription = processor.decode(outputs[0], skip_special_tokens=True)
return transcription
except Exception as e:
return f"เกิดข้อผิดพลาด: {str(e)}"
# Initialize application
print("Initializing application...")
model_loaded = load_model_and_processor()
if model_loaded:
print("Creating Gradio interface...")
demo = gr.Interface(
fn=process_handwriting,
inputs=gr.Image(type="pil", label="อัพโหลดรูปลายมือเขียนภาษาไทย"),
outputs=gr.Textbox(label="ข้อความที่แปลงได้"),
title="Thai Handwriting to Text",
description="อัพโหลดรูปภาพลายมือเขียนภาษาไทยเพื่อแปลงเป็นข้อความ"
)
if __name__ == "__main__":
print("Launching application...")
demo.launch()
else:
print("Failed to load model and processor. Please check the logs.")