File size: 4,848 Bytes
7b04d4e
 
 
 
 
49a323c
7b04d4e
33fd6ad
27eab0f
33fd6ad
1cddd79
 
 
 
1666373
1cddd79
 
9fd1d46
 
fc9e0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fd1d46
 
7b04d4e
1cddd79
 
 
 
9fd1d46
30f620c
27eab0f
30f620c
27eab0f
fc9e0d8
 
49a323c
27eab0f
9fd1d46
27eab0f
9fd1d46
 
 
 
27eab0f
33fd6ad
1cddd79
9fd1d46
 
8059915
1cddd79
 
 
 
8059915
1cddd79
 
 
9fd1d46
 
1cddd79
 
 
9fd1d46
1cddd79
7b04d4e
1cddd79
 
30f4028
1cddd79
 
 
7b04d4e
1cddd79
 
27eab0f
 
1cddd79
 
27eab0f
1cddd79
27eab0f
 
1cddd79
 
 
30f620c
27eab0f
7b04d4e
1cddd79
7b04d4e
1cddd79
 
 
 
9fd1d46
7b04d4e
1cddd79
30f4028
9fd1d46
1cddd79
9fd1d46
7b04d4e
49a323c
b6ce847
49a323c
27eab0f
 
 
 
9fd1d46
27eab0f
33fd6ad
49a323c
 
30f4028
 
1cddd79
7b04d4e
1cddd79
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64

def create_monitor_interface():
    api_key = os.getenv("GROQ_API_KEY")
    
    class SafetyMonitor:
        def __init__(self, model_name: str = "llama-3.2-90b-vision-preview"):
            self.client = Groq(api_key=api_key)
            self.model_name = model_name
            self.max_image_size = (128, 128)  # Drastically reduced size
            self.jpeg_quality = 20  # Very low quality

        def resize_image(self, image):
            """Resize image while maintaining aspect ratio"""
            height, width = image.shape[:2]
            
            # Calculate aspect ratio
            aspect = width / height
            
            if width > height:
                new_width = min(self.max_image_size[0], width)
                new_height = int(new_width / aspect)
            else:
                new_height = min(self.max_image_size[1], height)
                new_width = int(new_height * aspect)
                
            resized = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
            return resized

        def analyze_frame(self, frame: np.ndarray) -> str:
            if frame is None:
                return "No frame received"
                
            # Convert and resize image
            if len(frame.shape) == 2:
                frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
            elif len(frame.shape) == 3 and frame.shape[2] == 4:
                frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
            
            frame = self.resize_image(frame)
            frame_pil = PILImage.fromarray(frame)
            
            # Convert to base64 with minimal size
            buffered = io.BytesIO()
            frame_pil.save(buffered, 
                         format="JPEG", 
                         quality=self.jpeg_quality, 
                         optimize=True)
            img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
            
            try:
                # Minimal prompt
                prompt = f"""List safety issues: <image>data:image/jpeg;base64,{img_base64}</image>"""

                completion = self.client.chat.completions.create(
                    messages=[
                        {
                            "role": "user",
                            "content": prompt
                        }
                    ],
                    model=self.model_name,
                    max_tokens=100,
                    temperature=0.1
                )
                return completion.choices[0].message.content
            except Exception as e:
                print(f"Detailed error: {str(e)}")
                return f"Analysis Error: {str(e)}"

        def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
            if frame is None:
                return None, "No image provided"
                
            analysis = self.analyze_frame(frame)
            display_frame = frame.copy()
            
            # Add text overlay
            overlay = display_frame.copy()
            height, width = display_frame.shape[:2]
            cv2.rectangle(overlay, (5, 5), (width-5, 100), (0, 0, 0), -1)
            cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame)
            
            # Add analysis text
            y_position = 30
            lines = analysis.split('\n')
            for line in lines:
                cv2.putText(display_frame, line[:80], (10, y_position),
                           cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
                y_position += 30
                if y_position >= 90:
                    break

            return display_frame, analysis

    # Create the main interface
    monitor = SafetyMonitor()
    
    with gr.Blocks() as demo:
        gr.Markdown("# Safety Analysis System")
        
        with gr.Row():
            input_image = gr.Image(label="Upload Image")
            output_image = gr.Image(label="Results")
        
        analysis_text = gr.Textbox(label="Analysis", lines=5)
            
        def analyze_image(image):
            if image is None:
                return None, "No image provided"
            try:
                processed_frame, analysis = monitor.process_frame(image)
                return processed_frame, analysis
            except Exception as e:
                print(f"Processing error: {str(e)}")
                return None, f"Error processing image: {str(e)}"
            
        input_image.change(
            fn=analyze_image,
            inputs=input_image,
            outputs=[output_image, analysis_text]
        )

    return demo

demo = create_monitor_interface()
demo.launch()