File size: 5,390 Bytes
7b04d4e 49a323c 7b04d4e 33fd6ad 5f3406b 33fd6ad 1cddd79 5f3406b 1cddd79 5f3406b fc9e0d8 5f3406b 7b04d4e 1cddd79 9fd1d46 30f620c 27eab0f 30f620c 27eab0f fc9e0d8 49a323c 27eab0f 5f3406b 27eab0f 9fd1d46 5f3406b 9fd1d46 27eab0f 33fd6ad 1cddd79 5f3406b 1cddd79 9fd1d46 1cddd79 9fd1d46 1cddd79 7b04d4e 1cddd79 30f4028 1cddd79 7b04d4e 1cddd79 27eab0f 1cddd79 27eab0f 1cddd79 27eab0f 1cddd79 30f620c 27eab0f 7b04d4e 1cddd79 7b04d4e 1cddd79 9fd1d46 7b04d4e 1cddd79 30f4028 9fd1d46 1cddd79 9fd1d46 7b04d4e 49a323c b6ce847 49a323c 27eab0f 9fd1d46 27eab0f 33fd6ad 49a323c 30f4028 1cddd79 7b04d4e 1cddd79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
from tempfile import NamedTemporaryFile
from pathlib import Path
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self):
self.client = Groq(api_key=api_key)
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (128, 128)
def resize_image(self, image):
height, width = image.shape[:2]
aspect = width / height
if width > height:
new_width = min(self.max_image_size[0], width)
new_height = int(new_width / aspect)
else:
new_height = min(self.max_image_size[1], height)
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return "No frame received"
# Convert and resize image
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame = self.resize_image(frame)
frame_pil = PILImage.fromarray(frame)
# Convert to base64 with minimal quality
buffered = io.BytesIO()
frame_pil.save(buffered,
format="JPEG",
quality=20,
optimize=True)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
try:
completion = self.client.chat.completions.create(
messages=[
{
"role": "user",
"content": "You are a workplace safety expert. Analyze the following image for safety concerns."
},
{
"role": "assistant",
"content": "I'll analyze the image for workplace safety concerns and provide specific observations."
},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What safety issues do you see?"
},
{
"type": "image_url",
"url": f"data:image/jpeg;base64,{img_base64}"
}
]
}
],
model=self.model_name,
max_tokens=100,
temperature=0.1
)
return completion.choices[0].message.content
except Exception as e:
print(f"Detailed error: {str(e)}")
return f"Analysis Error: {str(e)}"
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
if frame is None:
return None, "No image provided"
analysis = self.analyze_frame(frame)
display_frame = frame.copy()
# Add text overlay
overlay = display_frame.copy()
height, width = display_frame.shape[:2]
cv2.rectangle(overlay, (5, 5), (width-5, 100), (0, 0, 0), -1)
cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame)
# Add analysis text
y_position = 30
lines = analysis.split('\n')
for line in lines:
cv2.putText(display_frame, line[:80], (10, y_position),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_position += 30
if y_position >= 90:
break
return display_frame, analysis
# Create the main interface
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Results")
analysis_text = gr.Textbox(label="Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
return demo
demo = create_monitor_interface()
demo.launch() |