File size: 4,580 Bytes
7b04d4e 49a323c 7b04d4e 33fd6ad 27eab0f 33fd6ad 1cddd79 7b04d4e 1cddd79 27eab0f 30f620c 27eab0f 30f620c 27eab0f 49a323c 27eab0f 33fd6ad 1cddd79 8059915 1cddd79 8059915 1cddd79 f5d7cbd 1cddd79 7b04d4e 1cddd79 30f4028 1cddd79 7b04d4e 1cddd79 27eab0f 1cddd79 27eab0f 1cddd79 27eab0f 1cddd79 30f620c 27eab0f 7b04d4e 1cddd79 7b04d4e 1cddd79 30f4028 27eab0f 30f4028 7b04d4e 1cddd79 30f4028 1cddd79 27eab0f 7b04d4e 49a323c b6ce847 49a323c 27eab0f 30f620c 27eab0f 33fd6ad 49a323c 30f4028 1cddd79 49a323c 27eab0f 49a323c 7b04d4e 1cddd79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self, model_name: str = "mixtral-8x7b-vision"):
self.client = Groq(api_key=api_key)
self.model_name = model_name
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return "No frame received"
# Convert numpy array to PIL Image
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame_pil = PILImage.fromarray(frame)
# Convert to base64
buffered = io.BytesIO()
frame_pil.save(buffered, format="JPEG")
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
try:
prompt = f"""Please analyze this image for workplace safety issues. Focus on:
1. PPE usage (helmets, safety glasses, vests)
2. Unsafe behaviors or positions
3. Equipment and machinery safety
4. Environmental hazards
Provide specific observations.
<image>data:image/jpeg;base64,{img_base64}</image>"""
completion = self.client.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt
}
],
model=self.model_name,
max_tokens=200,
temperature=0.2
)
return completion.choices[0].message.content
except Exception as e:
print(f"Detailed error: {str(e)}") # For debugging
return f"Analysis Error: {str(e)}"
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
if frame is None:
return None, "No image provided"
analysis = self.analyze_frame(frame)
display_frame = frame.copy()
# Add text overlay
overlay = display_frame.copy()
height, width = display_frame.shape[:2]
cv2.rectangle(overlay, (5, 5), (width-5, 100), (0, 0, 0), -1)
cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame)
# Add analysis text
y_position = 30
lines = analysis.split('\n')
for line in lines:
cv2.putText(display_frame, line[:80], (10, y_position),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
y_position += 30
if y_position >= 90:
break
return display_frame, analysis
# Create the main interface
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("""
# Safety Monitoring System
Upload an image to analyze workplace safety concerns.
""")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Analysis Results")
analysis_text = gr.Textbox(label="Detailed Safety Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}") # For debugging
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
gr.Markdown("""
## Instructions:
1. Upload an image using the input panel
2. The system will automatically analyze it for safety concerns
3. View the analyzed image with overlay and detailed analysis below
""")
return demo
demo = create_monitor_interface()
demo.launch() |