capradeepgujaran's picture
Update app.py
771e08a verified
raw
history blame
12.4 kB
import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
class SafetyMonitor:
def __init__(self):
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800)
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
def preprocess_image(self, frame):
"""Prepare image for analysis."""
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
return self.resize_image(frame)
def resize_image(self, image):
"""Resize image while maintaining aspect ratio."""
height, width = image.shape[:2]
if height > self.max_image_size[1] or width > self.max_image_size[0]:
aspect = width / height
if width > height:
new_width = self.max_image_size[0]
new_height = int(new_width / aspect)
else:
new_height = self.max_image_size[1]
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
return image
def encode_image(self, frame):
"""Convert image to base64 encoding."""
frame_pil = PILImage.fromarray(frame)
buffered = io.BytesIO()
frame_pil.save(buffered, format="JPEG", quality=95)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
return f"data:image/jpeg;base64,{img_base64}"
def get_scene_context(self, image: np.ndarray) -> str:
"""Get scene understanding to determine context."""
try:
image_url = self.encode_image(image)
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Describe the key areas and elements visible in this construction/workplace image. Include:
1. Worker locations and activities
2. Equipment and machinery positions
3. Material storage or work areas
4. Environmental features
5. Access ways and pathways
Format as:
- Element: precise location description"""
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
}
],
temperature=0.3,
max_tokens=200,
stream=False
)
return completion.choices[0].message.content
except Exception as e:
print(f"Scene analysis error: {str(e)}")
return ""
def analyze_frame(self, frame: np.ndarray) -> tuple[str, dict]:
"""Analyze frame and return both safety analysis and scene context."""
if frame is None:
return "No frame received", {}
# First get scene understanding
scene_context = self.get_scene_context(frame)
scene_regions = self.parse_scene_context(scene_context)
# Then perform safety analysis with context
frame = self.preprocess_image(frame)
image_url = self.encode_image(frame)
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this workplace image for safety concerns. For each identified hazard:
1. Specify the exact location where the hazard exists
2. Describe the specific safety issue
3. Note any violations or risks
Format each observation exactly as:
- <location>area:detailed hazard description</location>
Consider all safety aspects:
- PPE compliance
- Ergonomic risks
- Equipment safety
- Environmental hazards
- Material handling
- Access/egress
- Work procedures
"""
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
}
],
temperature=0.5,
max_tokens=500,
stream=False
)
return completion.choices[0].message.content, scene_regions
except Exception as e:
print(f"Analysis error: {str(e)}")
return f"Analysis Error: {str(e)}", scene_regions
def parse_scene_context(self, context: str) -> dict:
"""Parse scene context to get region mapping."""
regions = {}
for line in context.split('\n'):
if line.strip().startswith('-'):
parts = line.strip('- ').split(':')
if len(parts) == 2:
element_type = parts[0].strip()
location = parts[1].strip()
regions[element_type] = location
return regions
def get_region_coordinates(self, location: str, image_shape: tuple) -> tuple:
"""Convert location description to coordinates."""
height, width = image_shape[:2]
# Parse location description for spatial information
location = location.lower()
x1, y1, x2, y2 = 0, 0, width, height # Default to full image
# Horizontal position
if 'left' in location:
x2 = width // 2
elif 'right' in location:
x1 = width // 2
elif 'center' in location:
x1 = width // 4
x2 = 3 * width // 4
# Vertical position
if 'top' in location:
y2 = height // 2
elif 'bottom' in location:
y1 = height // 2
elif 'middle' in location or 'center' in location:
y1 = height // 4
y2 = 3 * height // 4
return (x1, y1, x2, y2)
def draw_observations(self, image: np.ndarray, observations: list, scene_regions: dict) -> np.ndarray:
"""Draw safety observations using scene context."""
height, width = image.shape[:2]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 2
padding = 10
for idx, obs in enumerate(observations):
color = self.colors[idx % len(self.colors)]
# Find best matching region from scene context or parse location directly
location = obs['location'].lower()
x1, y1, x2, y2 = self.get_region_coordinates(location, image.shape)
# Draw observation box
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
# Add label
label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description']
label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
# Position text above the box
text_x = max(0, x1)
text_y = max(label_size[1] + padding, y1 - padding)
# Draw text background
cv2.rectangle(image,
(text_x, text_y - label_size[1] - padding),
(text_x + label_size[0] + padding, text_y),
color, -1)
# Draw text
cv2.putText(image, label,
(text_x + padding//2, text_y - padding//2),
font, font_scale, (255, 255, 255), thickness)
return image
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
"""Process frame with safety analysis and visualization."""
if frame is None:
return None, "No image provided"
# Get analysis and scene context
analysis, scene_regions = self.analyze_frame(frame)
display_frame = frame.copy()
# Parse observations
observations = []
for line in analysis.split('\n'):
line = line.strip()
if line.startswith('-') and '<location>' in line and '</location>' in line:
start = line.find('<location>') + len('<location>')
end = line.find('</location>')
location_description = line[start:end].strip()
if ':' in location_description:
location, description = location_description.split(':', 1)
observations.append({
'location': location.strip(),
'description': description.strip()
})
# Draw observations if any were found
if observations:
annotated_frame = self.draw_observations(display_frame, observations, scene_regions)
return annotated_frame, analysis
return display_frame, analysis
def create_monitor_interface():
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Safety Analysis")
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
gr.Markdown("""
## Instructions:
1. Upload any workplace/safety-related image
2. View identified hazards and their locations
3. Read detailed analysis of safety concerns
""")
return demo
if __name__ == "__main__":
demo = create_monitor_interface()
demo.launch()