capradeepgujaran
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from PIL import Image as PILImage
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
|
|
10 |
|
11 |
def create_monitor_interface():
|
12 |
api_key = os.getenv("GROQ_API_KEY")
|
@@ -15,14 +16,27 @@ def create_monitor_interface():
|
|
15 |
def __init__(self):
|
16 |
self.client = Groq()
|
17 |
self.model_name = "llama-3.2-90b-vision-preview"
|
18 |
-
self.max_image_size = (
|
19 |
-
self.colors = [(
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def analyze_frame(self, frame: np.ndarray) -> str:
|
22 |
if frame is None:
|
23 |
-
return ""
|
24 |
-
|
25 |
-
# Convert image
|
26 |
if len(frame.shape) == 2:
|
27 |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
28 |
elif len(frame.shape) == 3 and frame.shape[2] == 4:
|
@@ -31,11 +45,12 @@ def create_monitor_interface():
|
|
31 |
frame = self.resize_image(frame)
|
32 |
frame_pil = PILImage.fromarray(frame)
|
33 |
|
|
|
34 |
buffered = io.BytesIO()
|
35 |
frame_pil.save(buffered,
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
40 |
image_url = f"data:image/jpeg;base64,{img_base64}"
|
41 |
|
@@ -43,36 +58,14 @@ def create_monitor_interface():
|
|
43 |
completion = self.client.chat.completions.create(
|
44 |
model=self.model_name,
|
45 |
messages=[
|
46 |
-
{
|
47 |
-
"role": "system",
|
48 |
-
"content": """You are a construction site safety expert specializing in ergonomics and workplace safety.
|
49 |
-
Analyze images for:
|
50 |
-
1. Worker posture and ergonomic risks
|
51 |
-
2. PPE usage and compliance
|
52 |
-
3. Tool and equipment safety
|
53 |
-
4. Environmental hazards
|
54 |
-
5. Working position and technique"""
|
55 |
-
},
|
56 |
{
|
57 |
"role": "user",
|
58 |
"content": [
|
59 |
{
|
60 |
"type": "text",
|
61 |
-
"text": """
|
62 |
-
|
63 |
-
|
64 |
-
2. PPE compliance (knee pads, gloves, appropriate footwear)
|
65 |
-
3. Working technique and body mechanics
|
66 |
-
4. Surrounding hazards or risks
|
67 |
-
|
68 |
-
For each issue identified, format your response as:
|
69 |
-
- <location>position:specific safety concern and recommendation</location>
|
70 |
-
|
71 |
-
For example:
|
72 |
-
- <location>center:Worker kneeling without knee protection, risking joint injury. Recommend knee pads.</location>
|
73 |
-
- <location>bottom:Improper back posture while working, potential for strain. Should maintain straight back.</location>
|
74 |
-
|
75 |
-
Be specific about each safety concern you observe."""
|
76 |
},
|
77 |
{
|
78 |
"type": "image_url",
|
@@ -81,127 +74,78 @@ def create_monitor_interface():
|
|
81 |
}
|
82 |
}
|
83 |
]
|
|
|
|
|
|
|
|
|
84 |
}
|
85 |
],
|
86 |
-
temperature=0.
|
87 |
-
max_tokens=
|
88 |
-
|
|
|
|
|
89 |
)
|
90 |
-
|
91 |
-
response = completion.choices[0].message.content
|
92 |
-
print(f"Raw response: {response}") # For debugging
|
93 |
-
return response
|
94 |
-
|
95 |
except Exception as e:
|
96 |
-
print(f"
|
97 |
-
return ""
|
98 |
-
|
99 |
-
def resize_image(self, image):
|
100 |
-
height, width = image.shape[:2]
|
101 |
-
if height > self.max_image_size[1] or width > self.max_image_size[0]:
|
102 |
-
aspect = width / height
|
103 |
-
if width > height:
|
104 |
-
new_width = self.max_image_size[0]
|
105 |
-
new_height = int(new_width / aspect)
|
106 |
-
else:
|
107 |
-
new_height = self.max_image_size[1]
|
108 |
-
new_width = int(new_height * aspect)
|
109 |
-
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
110 |
-
return image
|
111 |
-
|
112 |
-
def get_region_coordinates(self, position: str, image_shape: tuple) -> tuple:
|
113 |
-
height, width = image_shape[:2]
|
114 |
-
regions = {
|
115 |
-
'top-left': (0, 0, width//3, height//3),
|
116 |
-
'top': (width//3, 0, 2*width//3, height//3),
|
117 |
-
'top-right': (2*width//3, 0, width, height//3),
|
118 |
-
'left': (0, height//3, width//3, 2*height//3),
|
119 |
-
'center': (width//3, height//3, 2*width//3, 2*height//3),
|
120 |
-
'right': (2*width//3, height//3, width, 2*height//3),
|
121 |
-
'bottom-left': (0, 2*height//3, width//3, height),
|
122 |
-
'bottom': (width//3, 2*height//3, 2*width//3, height),
|
123 |
-
'bottom-right': (2*width//3, 2*height//3, width, height)
|
124 |
-
}
|
125 |
-
|
126 |
-
# Try to match the position with regions
|
127 |
-
matched_region = None
|
128 |
-
max_match_length = 0
|
129 |
-
position_lower = position.lower()
|
130 |
-
|
131 |
-
for region_name in regions:
|
132 |
-
if region_name in position_lower:
|
133 |
-
if len(region_name) > max_match_length:
|
134 |
-
matched_region = region_name
|
135 |
-
max_match_length = len(region_name)
|
136 |
-
|
137 |
-
if matched_region:
|
138 |
-
return regions[matched_region]
|
139 |
-
return regions['center']
|
140 |
|
141 |
def draw_observations(self, image, observations):
|
142 |
height, width = image.shape[:2]
|
143 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
144 |
-
font_scale = 0.
|
145 |
thickness = 2
|
146 |
|
|
|
147 |
for idx, obs in enumerate(observations):
|
148 |
color = self.colors[idx % len(self.colors)]
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
label_x = max(0, min(x1, width - label_size[0]))
|
165 |
-
label_y = max(20, y1 - 5)
|
166 |
-
|
167 |
-
cv2.rectangle(image, (label_x, label_y - 20),
|
168 |
-
(label_x + label_size[0], label_y), color, -1)
|
169 |
-
cv2.putText(image, label, (label_x, label_y - 5),
|
170 |
-
font, font_scale, (255, 255, 255), thickness)
|
171 |
|
172 |
return image
|
173 |
|
174 |
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
175 |
if frame is None:
|
176 |
return None, "No image provided"
|
177 |
-
|
178 |
analysis = self.analyze_frame(frame)
|
179 |
-
|
180 |
|
|
|
181 |
observations = []
|
182 |
for line in analysis.split('\n'):
|
183 |
line = line.strip()
|
184 |
if line.startswith('-'):
|
|
|
185 |
if '<location>' in line and '</location>' in line:
|
186 |
start = line.find('<location>') + len('<location>')
|
187 |
end = line.find('</location>')
|
188 |
-
observation = line[
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
display_frame = frame.copy()
|
195 |
-
if observations:
|
196 |
-
annotated_frame = self.draw_observations(display_frame, observations)
|
197 |
-
return annotated_frame, analysis
|
198 |
|
199 |
-
#
|
200 |
-
|
201 |
-
return display_frame, analysis
|
202 |
|
203 |
-
return
|
204 |
|
|
|
205 |
monitor = SafetyMonitor()
|
206 |
|
207 |
with gr.Blocks() as demo:
|
@@ -209,9 +153,9 @@ def create_monitor_interface():
|
|
209 |
|
210 |
with gr.Row():
|
211 |
input_image = gr.Image(label="Upload Image")
|
212 |
-
output_image = gr.Image(label="
|
213 |
|
214 |
-
analysis_text = gr.Textbox(label="
|
215 |
|
216 |
def analyze_image(image):
|
217 |
if image is None:
|
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
10 |
+
import random
|
11 |
|
12 |
def create_monitor_interface():
|
13 |
api_key = os.getenv("GROQ_API_KEY")
|
|
|
16 |
def __init__(self):
|
17 |
self.client = Groq()
|
18 |
self.model_name = "llama-3.2-90b-vision-preview"
|
19 |
+
self.max_image_size = (640, 640) # Increased size for better visibility
|
20 |
+
self.colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]
|
21 |
|
22 |
+
def resize_image(self, image):
|
23 |
+
height, width = image.shape[:2]
|
24 |
+
aspect = width / height
|
25 |
+
|
26 |
+
if width > height:
|
27 |
+
new_width = min(self.max_image_size[0], width)
|
28 |
+
new_height = int(new_width / aspect)
|
29 |
+
else:
|
30 |
+
new_height = min(self.max_image_size[1], height)
|
31 |
+
new_width = int(new_height * aspect)
|
32 |
+
|
33 |
+
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
34 |
+
|
35 |
def analyze_frame(self, frame: np.ndarray) -> str:
|
36 |
if frame is None:
|
37 |
+
return "No frame received"
|
38 |
+
|
39 |
+
# Convert and resize image
|
40 |
if len(frame.shape) == 2:
|
41 |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
42 |
elif len(frame.shape) == 3 and frame.shape[2] == 4:
|
|
|
45 |
frame = self.resize_image(frame)
|
46 |
frame_pil = PILImage.fromarray(frame)
|
47 |
|
48 |
+
# Convert to base64 with minimal quality
|
49 |
buffered = io.BytesIO()
|
50 |
frame_pil.save(buffered,
|
51 |
+
format="JPEG",
|
52 |
+
quality=30,
|
53 |
+
optimize=True)
|
54 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
55 |
image_url = f"data:image/jpeg;base64,{img_base64}"
|
56 |
|
|
|
58 |
completion = self.client.chat.completions.create(
|
59 |
model=self.model_name,
|
60 |
messages=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
{
|
62 |
"role": "user",
|
63 |
"content": [
|
64 |
{
|
65 |
"type": "text",
|
66 |
+
"text": """Analyze this workplace image and describe each safety concern in this format:
|
67 |
+
- <location>Description</location>
|
68 |
+
Use one line per issue, starting with a dash and location in tags."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
},
|
70 |
{
|
71 |
"type": "image_url",
|
|
|
74 |
}
|
75 |
}
|
76 |
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"role": "assistant",
|
80 |
+
"content": ""
|
81 |
}
|
82 |
],
|
83 |
+
temperature=0.1,
|
84 |
+
max_tokens=150,
|
85 |
+
top_p=1,
|
86 |
+
stream=False,
|
87 |
+
stop=None
|
88 |
)
|
89 |
+
return completion.choices[0].message.content
|
|
|
|
|
|
|
|
|
90 |
except Exception as e:
|
91 |
+
print(f"Detailed error: {str(e)}")
|
92 |
+
return f"Analysis Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
def draw_observations(self, image, observations):
|
95 |
height, width = image.shape[:2]
|
96 |
font = cv2.FONT_HERSHEY_SIMPLEX
|
97 |
+
font_scale = 0.5
|
98 |
thickness = 2
|
99 |
|
100 |
+
# Generate random positions for each observation
|
101 |
for idx, obs in enumerate(observations):
|
102 |
color = self.colors[idx % len(self.colors)]
|
103 |
|
104 |
+
# Generate random box position
|
105 |
+
box_width = width // 3
|
106 |
+
box_height = height // 3
|
107 |
+
x = random.randint(0, width - box_width)
|
108 |
+
y = random.randint(0, height - box_height)
|
109 |
+
|
110 |
+
# Draw rectangle
|
111 |
+
cv2.rectangle(image, (x, y), (x + box_width, y + box_height), color, 2)
|
112 |
+
|
113 |
+
# Add label with background
|
114 |
+
label = obs[:40] + "..." if len(obs) > 40 else obs
|
115 |
+
label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
|
116 |
+
cv2.rectangle(image, (x, y - 20), (x + label_size[0], y), color, -1)
|
117 |
+
cv2.putText(image, label, (x, y - 5), font, font_scale, (255, 255, 255), thickness)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
return image
|
120 |
|
121 |
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
122 |
if frame is None:
|
123 |
return None, "No image provided"
|
124 |
+
|
125 |
analysis = self.analyze_frame(frame)
|
126 |
+
display_frame = self.resize_image(frame.copy())
|
127 |
|
128 |
+
# Parse observations from the analysis
|
129 |
observations = []
|
130 |
for line in analysis.split('\n'):
|
131 |
line = line.strip()
|
132 |
if line.startswith('-'):
|
133 |
+
# Extract text between <location> tags if present
|
134 |
if '<location>' in line and '</location>' in line:
|
135 |
start = line.find('<location>') + len('<location>')
|
136 |
end = line.find('</location>')
|
137 |
+
observation = line[end + len('</location>'):].strip()
|
138 |
+
else:
|
139 |
+
observation = line[1:].strip() # Remove the dash
|
140 |
+
if observation:
|
141 |
+
observations.append(observation)
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
# Draw observations on the image
|
144 |
+
annotated_frame = self.draw_observations(display_frame, observations)
|
|
|
145 |
|
146 |
+
return annotated_frame, analysis
|
147 |
|
148 |
+
# Create the main interface
|
149 |
monitor = SafetyMonitor()
|
150 |
|
151 |
with gr.Blocks() as demo:
|
|
|
153 |
|
154 |
with gr.Row():
|
155 |
input_image = gr.Image(label="Upload Image")
|
156 |
+
output_image = gr.Image(label="Annotated Results")
|
157 |
|
158 |
+
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
|
159 |
|
160 |
def analyze_image(image):
|
161 |
if image is None:
|