capradeepgujaran
commited on
Commit
•
519704e
1
Parent(s):
771e08a
Update app.py
Browse files
app.py
CHANGED
@@ -10,13 +10,14 @@ import base64
|
|
10 |
|
11 |
class SafetyMonitor:
|
12 |
def __init__(self):
|
|
|
13 |
self.client = Groq()
|
14 |
self.model_name = "llama-3.2-90b-vision-preview"
|
15 |
self.max_image_size = (800, 800)
|
16 |
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
|
17 |
|
18 |
def preprocess_image(self, frame):
|
19 |
-
"""
|
20 |
if len(frame.shape) == 2:
|
21 |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
22 |
elif len(frame.shape) == 3 and frame.shape[2] == 4:
|
@@ -46,8 +47,8 @@ class SafetyMonitor:
|
|
46 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
47 |
return f"data:image/jpeg;base64,{img_base64}"
|
48 |
|
49 |
-
def get_scene_context(self, image
|
50 |
-
"""
|
51 |
try:
|
52 |
image_url = self.encode_image(image)
|
53 |
completion = self.client.chat.completions.create(
|
@@ -58,15 +59,15 @@ class SafetyMonitor:
|
|
58 |
"content": [
|
59 |
{
|
60 |
"type": "text",
|
61 |
-
"text": """
|
62 |
1. Worker locations and activities
|
63 |
-
2. Equipment and machinery
|
64 |
-
3.
|
65 |
-
4.
|
66 |
-
5.
|
67 |
-
|
68 |
-
Format as:
|
69 |
-
- Element:
|
70 |
},
|
71 |
{
|
72 |
"type": "image_url",
|
@@ -86,174 +87,172 @@ class SafetyMonitor:
|
|
86 |
print(f"Scene analysis error: {str(e)}")
|
87 |
return ""
|
88 |
|
89 |
-
def analyze_frame(self, frame
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
""
|
128 |
-
},
|
129 |
-
{
|
130 |
-
"type": "image_url",
|
131 |
-
"image_url": {
|
132 |
-
"url": image_url
|
133 |
-
}
|
134 |
}
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
height, width
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
#
|
164 |
-
|
165 |
-
x1, y1, x2, y2 = 0, 0, width, height # Default to full image
|
166 |
|
167 |
-
#
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
if 'top' in location:
|
178 |
-
y2 = height // 2
|
179 |
-
elif 'bottom' in location:
|
180 |
-
y1 = height // 2
|
181 |
-
elif 'middle' in location or 'center' in location:
|
182 |
-
y1 = height // 4
|
183 |
-
y2 = 3 * height // 4
|
184 |
-
|
185 |
-
return (x1, y1, x2, y2)
|
186 |
-
|
187 |
-
def draw_observations(self, image: np.ndarray, observations: list, scene_regions: dict) -> np.ndarray:
|
188 |
-
"""Draw safety observations using scene context."""
|
189 |
-
height, width = image.shape[:2]
|
190 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
191 |
-
font_scale = 0.5
|
192 |
-
thickness = 2
|
193 |
-
padding = 10
|
194 |
-
|
195 |
-
for idx, obs in enumerate(observations):
|
196 |
-
color = self.colors[idx % len(self.colors)]
|
197 |
-
|
198 |
-
# Find best matching region from scene context or parse location directly
|
199 |
-
location = obs['location'].lower()
|
200 |
-
x1, y1, x2, y2 = self.get_region_coordinates(location, image.shape)
|
201 |
-
|
202 |
-
# Draw observation box
|
203 |
-
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
204 |
-
|
205 |
-
# Add label
|
206 |
-
label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description']
|
207 |
-
label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
|
208 |
-
|
209 |
-
# Position text above the box
|
210 |
-
text_x = max(0, x1)
|
211 |
-
text_y = max(label_size[1] + padding, y1 - padding)
|
212 |
-
|
213 |
-
# Draw text background
|
214 |
-
cv2.rectangle(image,
|
215 |
-
(text_x, text_y - label_size[1] - padding),
|
216 |
-
(text_x + label_size[0] + padding, text_y),
|
217 |
-
color, -1)
|
218 |
-
|
219 |
-
# Draw text
|
220 |
-
cv2.putText(image, label,
|
221 |
-
(text_x + padding//2, text_y - padding//2),
|
222 |
-
font, font_scale, (255, 255, 255), thickness)
|
223 |
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
def create_monitor_interface():
|
259 |
monitor = SafetyMonitor()
|
|
|
10 |
|
11 |
class SafetyMonitor:
|
12 |
def __init__(self):
|
13 |
+
"""Initialize Safety Monitor with configuration."""
|
14 |
self.client = Groq()
|
15 |
self.model_name = "llama-3.2-90b-vision-preview"
|
16 |
self.max_image_size = (800, 800)
|
17 |
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
|
18 |
|
19 |
def preprocess_image(self, frame):
|
20 |
+
"""Process image for analysis."""
|
21 |
if len(frame.shape) == 2:
|
22 |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
23 |
elif len(frame.shape) == 3 and frame.shape[2] == 4:
|
|
|
47 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
48 |
return f"data:image/jpeg;base64,{img_base64}"
|
49 |
|
50 |
+
def get_scene_context(self, image):
|
51 |
+
"""Analyze the scene context."""
|
52 |
try:
|
53 |
image_url = self.encode_image(image)
|
54 |
completion = self.client.chat.completions.create(
|
|
|
59 |
"content": [
|
60 |
{
|
61 |
"type": "text",
|
62 |
+
"text": """Analyze this workplace image and identify key areas and elements. Include:
|
63 |
1. Worker locations and activities
|
64 |
+
2. Equipment and machinery
|
65 |
+
3. Materials and storage
|
66 |
+
4. Access routes and paths
|
67 |
+
5. Hazardous areas
|
68 |
+
|
69 |
+
Format each observation as:
|
70 |
+
- Element: specific location in image"""
|
71 |
},
|
72 |
{
|
73 |
"type": "image_url",
|
|
|
87 |
print(f"Scene analysis error: {str(e)}")
|
88 |
return ""
|
89 |
|
90 |
+
def analyze_frame(self, frame):
|
91 |
+
"""Perform safety analysis on the frame."""
|
92 |
+
if frame is None:
|
93 |
+
return "No frame received", {}
|
94 |
+
|
95 |
+
frame = self.preprocess_image(frame)
|
96 |
+
image_url = self.encode_image(frame)
|
97 |
+
|
98 |
+
try:
|
99 |
+
completion = self.client.chat.completions.create(
|
100 |
+
model=self.model_name,
|
101 |
+
messages=[
|
102 |
+
{
|
103 |
+
"role": "user",
|
104 |
+
"content": [
|
105 |
+
{
|
106 |
+
"type": "text",
|
107 |
+
"text": """Analyze this image for safety hazards. For each hazard:
|
108 |
+
1. Specify the precise location in the image
|
109 |
+
2. Describe the safety concern or violation
|
110 |
+
3. Indicate the potential risk
|
111 |
+
|
112 |
+
Format each finding as:
|
113 |
+
- <location>position:detailed safety concern</location>
|
114 |
+
|
115 |
+
Look for all types of safety issues:
|
116 |
+
- PPE compliance
|
117 |
+
- Ergonomic risks
|
118 |
+
- Equipment safety
|
119 |
+
- Environmental hazards
|
120 |
+
- Material handling
|
121 |
+
- Work procedures
|
122 |
+
- Access and egress
|
123 |
+
- Housekeeping"""
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"type": "image_url",
|
127 |
+
"image_url": {
|
128 |
+
"url": image_url
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
}
|
130 |
+
}
|
131 |
+
]
|
132 |
+
}
|
133 |
+
],
|
134 |
+
temperature=0.5,
|
135 |
+
max_tokens=500,
|
136 |
+
stream=False
|
137 |
+
)
|
138 |
+
return completion.choices[0].message.content, {}
|
139 |
+
except Exception as e:
|
140 |
+
print(f"Analysis error: {str(e)}")
|
141 |
+
return f"Analysis Error: {str(e)}", {}
|
142 |
|
143 |
+
def get_region_coordinates(self, position, image_shape):
|
144 |
+
"""Convert textual position to coordinates."""
|
145 |
+
height, width = image_shape[:2]
|
146 |
+
|
147 |
+
# Parse position for spatial information
|
148 |
+
position = position.lower()
|
149 |
+
|
150 |
+
# Base coordinates (full image)
|
151 |
+
x1, y1, x2, y2 = 0, 0, width, height
|
152 |
+
|
153 |
+
# Define regions
|
154 |
+
regions = {
|
155 |
+
'center': (width//3, height//3, 2*width//3, 2*height//3),
|
156 |
+
'top': (width//3, 0, 2*width//3, height//3),
|
157 |
+
'bottom': (width//3, 2*height//3, 2*width//3, height),
|
158 |
+
'left': (0, height//3, width//3, 2*height//3),
|
159 |
+
'right': (2*width//3, height//3, width, 2*height//3),
|
160 |
+
'top-left': (0, 0, width//3, height//3),
|
161 |
+
'top-right': (2*width//3, 0, width, height//3),
|
162 |
+
'bottom-left': (0, 2*height//3, width//3, height),
|
163 |
+
'bottom-right': (2*width//3, 2*height//3, width, height),
|
164 |
+
'upper': (0, 0, width, height//2),
|
165 |
+
'lower': (0, height//2, width, height),
|
166 |
+
'middle': (0, height//3, width, 2*height//3)
|
167 |
+
}
|
168 |
+
|
169 |
+
# Find best matching region
|
170 |
+
best_match = None
|
171 |
+
max_match = 0
|
172 |
+
for region, coords in regions.items():
|
173 |
+
if region in position:
|
174 |
+
words = region.split('-')
|
175 |
+
matches = sum(1 for word in words if word in position)
|
176 |
+
if matches > max_match:
|
177 |
+
max_match = matches
|
178 |
+
best_match = coords
|
179 |
+
|
180 |
+
return best_match if best_match else (x1, y1, x2, y2)
|
181 |
+
|
182 |
+
def draw_observations(self, image, observations):
|
183 |
+
"""Draw bounding boxes and labels for safety observations."""
|
184 |
+
height, width = image.shape[:2]
|
185 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
186 |
+
font_scale = 0.5
|
187 |
+
thickness = 2
|
188 |
+
padding = 10
|
189 |
+
|
190 |
+
for idx, obs in enumerate(observations):
|
191 |
+
color = self.colors[idx % len(self.colors)]
|
192 |
|
193 |
+
# Get coordinates for this observation
|
194 |
+
x1, y1, x2, y2 = self.get_region_coordinates(obs['location'], image.shape)
|
|
|
195 |
|
196 |
+
# Draw rectangle
|
197 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
|
198 |
+
|
199 |
+
# Add label with background
|
200 |
+
label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description']
|
201 |
+
label_size, _ = cv2.getTextSize(label, font, font_scale, thickness)
|
202 |
+
|
203 |
+
# Position text above the box
|
204 |
+
text_x = max(0, x1)
|
205 |
+
text_y = max(label_size[1] + padding, y1 - padding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
+
# Draw text background
|
208 |
+
cv2.rectangle(image,
|
209 |
+
(text_x, text_y - label_size[1] - padding),
|
210 |
+
(text_x + label_size[0] + padding, text_y),
|
211 |
+
color, -1)
|
212 |
+
|
213 |
+
# Draw text
|
214 |
+
cv2.putText(image, label,
|
215 |
+
(text_x + padding//2, text_y - padding//2),
|
216 |
+
font, font_scale, (255, 255, 255), thickness)
|
217 |
+
|
218 |
+
return image
|
219 |
|
220 |
+
def process_frame(self, frame):
|
221 |
+
"""Main processing pipeline for safety analysis."""
|
222 |
+
if frame is None:
|
223 |
+
return None, "No image provided"
|
224 |
+
|
225 |
+
try:
|
226 |
+
# Get analysis
|
227 |
+
analysis, _ = self.analyze_frame(frame)
|
228 |
+
display_frame = frame.copy()
|
229 |
+
|
230 |
+
# Parse observations
|
231 |
+
observations = []
|
232 |
+
for line in analysis.split('\n'):
|
233 |
+
line = line.strip()
|
234 |
+
if line.startswith('-') and '<location>' in line and '</location>' in line:
|
235 |
+
start = line.find('<location>') + len('<location>')
|
236 |
+
end = line.find('</location>')
|
237 |
+
location_description = line[start:end].strip()
|
238 |
+
|
239 |
+
if ':' in location_description:
|
240 |
+
location, description = location_description.split(':', 1)
|
241 |
+
observations.append({
|
242 |
+
'location': location.strip(),
|
243 |
+
'description': description.strip()
|
244 |
+
})
|
245 |
+
|
246 |
+
# Draw observations
|
247 |
+
if observations:
|
248 |
+
annotated_frame = self.draw_observations(display_frame, observations)
|
249 |
+
return annotated_frame, analysis
|
250 |
+
|
251 |
+
return display_frame, analysis
|
252 |
+
|
253 |
+
except Exception as e:
|
254 |
+
print(f"Processing error: {str(e)}")
|
255 |
+
return None, f"Error processing image: {str(e)}"
|
256 |
|
257 |
def create_monitor_interface():
|
258 |
monitor = SafetyMonitor()
|