capradeepgujaran commited on
Commit
5b41d95
·
verified ·
1 Parent(s): 95ca446

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +228 -29
app.py CHANGED
@@ -260,55 +260,254 @@ class RobustSafetyMonitor:
260
 
261
 
262
  def create_monitor_interface():
263
- """Create the Gradio interface."""
264
- monitor = RobustSafetyMonitor()
265
 
266
- with gr.Blocks(theme=gr.themes.Base()) as demo:
267
- gr.Markdown("# Workplace Safety Analysis System")
268
- gr.Markdown("Powered by Groq LLaVA Vision and YOLOv5")
269
-
270
- with gr.Row():
271
- input_image = gr.Image(label="Upload Workplace Image", type="numpy")
272
- output_image = gr.Image(label="Safety Analysis Visualization")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
 
274
  with gr.Row():
275
- analysis_text = gr.Textbox(
276
- label="Detailed Safety Analysis",
277
- lines=8,
278
- placeholder="Safety analysis will appear here..."
279
- )
280
 
 
 
281
  def analyze_image(image):
282
  if image is None:
283
- return None, "Please upload an image"
284
  try:
285
  processed_frame, analysis = monitor.process_frame(image)
286
  return processed_frame, analysis
287
  except Exception as e:
288
- print(f"Analysis error: {str(e)}")
289
- return None, f"Error analyzing image: {str(e)}"
290
 
291
- input_image.upload(
292
  fn=analyze_image,
293
  inputs=input_image,
294
  outputs=[output_image, analysis_text]
295
  )
296
 
297
  gr.Markdown("""
298
- ## Instructions
299
- 1. Upload a workplace image for safety analysis
300
- 2. View detected hazards and their locations in the visualization
301
- 3. Read the detailed safety analysis below the images
302
-
303
- ## Features
304
- - Real-time object detection
305
- - AI-powered safety risk analysis
306
- - Visual risk highlighting
307
- - Detailed safety recommendations
308
  """)
309
 
310
  return demo
311
 
312
  if __name__ == "__main__":
313
  demo = create_monitor_interface()
314
- demo.launch(share=True)
 
260
 
261
 
262
  def create_monitor_interface():
263
+ api_key = os.getenv("GROQ_API_KEY")
 
264
 
265
+ class SafetyMonitor:
266
+ def __init__(self):
267
+ """Initialize Safety Monitor with configuration."""
268
+ self.client = Groq()
269
+ self.model_name = "llama-3.2-90b-vision-preview"
270
+ self.max_image_size = (800, 800)
271
+ self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
272
+
273
+ def resize_image(self, image):
274
+ """Resize image while maintaining aspect ratio."""
275
+ height, width = image.shape[:2]
276
+ aspect = width / height
277
+
278
+ if width > height:
279
+ new_width = min(self.max_image_size[0], width)
280
+ new_height = int(new_width / aspect)
281
+ else:
282
+ new_height = min(self.max_image_size[1], height)
283
+ new_width = int(new_height * aspect)
284
+
285
+ return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
286
+
287
+ def analyze_frame(self, frame: np.ndarray) -> str:
288
+ """Analyze frame for safety concerns."""
289
+ if frame is None:
290
+ return "No frame received"
291
+
292
+ # Convert and resize image
293
+ if len(frame.shape) == 2:
294
+ frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
295
+ elif len(frame.shape) == 3 and frame.shape[2] == 4:
296
+ frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
297
+
298
+ frame = self.resize_image(frame)
299
+ frame_pil = PILImage.fromarray(frame)
300
+
301
+ # Convert to base64
302
+ buffered = io.BytesIO()
303
+ frame_pil.save(buffered,
304
+ format="JPEG",
305
+ quality=95, # High quality for better analysis
306
+ optimize=True)
307
+ img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
308
+ image_url = f"data:image/jpeg;base64,{img_base64}"
309
+
310
+ try:
311
+ completion = self.client.chat.completions.create(
312
+ model=self.model_name,
313
+ messages=[
314
+ {
315
+ "role": "user",
316
+ "content": [
317
+ {
318
+ "type": "text",
319
+ "text": """Analyze this workplace image for safety hazards. For each hazard:
320
+ 1. Specify the exact location (e.g., center, top-left, bottom-right)
321
+ 2. Describe the safety concern in detail
322
+
323
+ Format each finding as:
324
+ - <location>position:detailed safety description</location>
325
+
326
+ Consider:
327
+ - PPE usage and compliance
328
+ - Ergonomic risks
329
+ - Equipment safety
330
+ - Environmental hazards
331
+ - Work procedures
332
+ - Material handling
333
+ """
334
+ },
335
+ {
336
+ "type": "image_url",
337
+ "image_url": {
338
+ "url": image_url
339
+ }
340
+ }
341
+ ]
342
+ }
343
+ ],
344
+ temperature=0.5,
345
+ max_tokens=500,
346
+ stream=False
347
+ )
348
+ return completion.choices[0].message.content
349
+ except Exception as e:
350
+ print(f"Analysis error: {str(e)}")
351
+ return f"Analysis Error: {str(e)}"
352
+
353
+ def draw_observations(self, image, observations):
354
+ """Draw safety observations with accurate locations."""
355
+ height, width = image.shape[:2]
356
+ font = cv2.FONT_HERSHEY_SIMPLEX
357
+ font_scale = 0.5
358
+ thickness = 2
359
+
360
+ def get_region_coordinates(location_text):
361
+ """Get coordinates based on location description."""
362
+ location_text = location_text.lower()
363
+ regions = {
364
+ # Basic positions
365
+ 'center': (width//3, height//3, 2*width//3, 2*height//3),
366
+ 'top': (width//4, 0, 3*width//4, height//3),
367
+ 'bottom': (width//4, 2*height//3, 3*width//4, height),
368
+ 'left': (0, height//4, width//3, 3*height//4),
369
+ 'right': (2*width//3, height//4, width, 3*height//4),
370
+ 'top-left': (0, 0, width//3, height//3),
371
+ 'top-right': (2*width//3, 0, width, height//3),
372
+ 'bottom-left': (0, 2*height//3, width//3, height),
373
+ 'bottom-right': (2*width//3, 2*height//3, width, height),
374
+
375
+ # Work areas
376
+ 'workspace': (width//4, height//4, 3*width//4, 3*height//4),
377
+ 'machine': (2*width//3, 0, width, height),
378
+ 'equipment': (2*width//3, height//3, width, 2*height//3),
379
+ 'material': (0, 2*height//3, width//3, height),
380
+ 'ground': (0, 2*height//3, width, height),
381
+ 'floor': (0, 3*height//4, width, height),
382
+
383
+ # Body regions
384
+ 'body': (width//3, height//3, 2*width//3, 2*height//3),
385
+ 'hands': (width//2, height//2, 3*width//4, 2*height//3),
386
+ 'head': (width//3, 0, 2*width//3, height//4),
387
+ 'feet': (width//3, 3*height//4, 2*width//3, height),
388
+ 'back': (width//3, height//3, 2*width//3, 2*height//3),
389
+ 'knees': (width//3, 2*height//3, 2*width//3, height),
390
+
391
+ # Special areas
392
+ 'workspace': (width//4, height//4, 3*width//4, 3*height//4),
393
+ 'working-area': (width//4, height//4, 3*width//4, 3*height//4),
394
+ 'surrounding': (0, 0, width, height),
395
+ 'background': (0, 0, width, height)
396
+ }
397
+
398
+ # Find best matching region
399
+ best_match = 'center' # default
400
+ max_match_length = 0
401
+
402
+ for region_name in regions.keys():
403
+ if region_name in location_text and len(region_name) > max_match_length:
404
+ best_match = region_name
405
+ max_match_length = len(region_name)
406
+
407
+ return regions[best_match]
408
+
409
+ for idx, obs in enumerate(observations):
410
+ color = self.colors[idx % len(self.colors)]
411
+
412
+ # Split location and description if available
413
+ parts = obs.split(':')
414
+ if len(parts) >= 2:
415
+ location = parts[0]
416
+ description = ':'.join(parts[1:])
417
+ else:
418
+ location = 'center'
419
+ description = obs
420
+
421
+ # Get region coordinates
422
+ x1, y1, x2, y2 = get_region_coordinates(location)
423
+
424
+ # Draw rectangle
425
+ cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
426
+
427
+ # Add label
428
+ label = description[:50] + "..." if len(description) > 50 else description
429
+ label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
430
+
431
+ # Position text above box
432
+ text_x = max(0, x1)
433
+ text_y = max(20, y1 - 5)
434
+
435
+ # Draw text background
436
+ cv2.rectangle(image,
437
+ (text_x, text_y - label_size[1] - 5),
438
+ (text_x + label_size[0], text_y),
439
+ color, -1)
440
+
441
+ # Draw text
442
+ cv2.putText(image, label, (text_x, text_y - 5),
443
+ font, font_scale, (255, 255, 255), thickness)
444
+
445
+ return image
446
+
447
+ def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
448
+ """Process frame and generate safety analysis."""
449
+ if frame is None:
450
+ return None, "No image provided"
451
+
452
+ analysis = self.analyze_frame(frame)
453
+ display_frame = self.resize_image(frame.copy())
454
+
455
+ # Parse observations
456
+ observations = []
457
+ for line in analysis.split('\n'):
458
+ line = line.strip()
459
+ if line.startswith('-'):
460
+ if '<location>' in line and '</location>' in line:
461
+ start = line.find('<location>') + len('<location>')
462
+ end = line.find('</location>')
463
+ observation = line[start:end].strip()
464
+ if observation:
465
+ observations.append(observation)
466
+
467
+ # Draw observations
468
+ if observations:
469
+ annotated_frame = self.draw_observations(display_frame, observations)
470
+ return annotated_frame, analysis
471
+
472
+ return display_frame, analysis
473
+
474
+ # Create interface
475
+ monitor = SafetyMonitor()
476
+
477
+ with gr.Blocks() as demo:
478
+ gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
479
 
480
  with gr.Row():
481
+ input_image = gr.Image(label="Upload Image")
482
+ output_image = gr.Image(label="Safety Analysis")
 
 
 
483
 
484
+ analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
485
+
486
  def analyze_image(image):
487
  if image is None:
488
+ return None, "No image provided"
489
  try:
490
  processed_frame, analysis = monitor.process_frame(image)
491
  return processed_frame, analysis
492
  except Exception as e:
493
+ print(f"Processing error: {str(e)}")
494
+ return None, f"Error processing image: {str(e)}"
495
 
496
+ input_image.change(
497
  fn=analyze_image,
498
  inputs=input_image,
499
  outputs=[output_image, analysis_text]
500
  )
501
 
502
  gr.Markdown("""
503
+ ## Instructions:
504
+ 1. Upload a workplace image
505
+ 2. View detected safety concerns
506
+ 3. Check detailed analysis
 
 
 
 
 
 
507
  """)
508
 
509
  return demo
510
 
511
  if __name__ == "__main__":
512
  demo = create_monitor_interface()
513
+ demo.launch()