capradeepgujaran
commited on
Commit
•
bda20be
1
Parent(s):
bd1163f
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ from PIL import Image as PILImage
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
10 |
-
import random
|
11 |
|
12 |
def create_monitor_interface():
|
13 |
api_key = os.getenv("GROQ_API_KEY")
|
@@ -16,26 +15,26 @@ def create_monitor_interface():
|
|
16 |
def __init__(self):
|
17 |
self.client = Groq()
|
18 |
self.model_name = "llama-3.2-90b-vision-preview"
|
19 |
-
self.max_image_size = (800, 800)
|
20 |
-
self.colors = [(
|
21 |
|
22 |
def resize_image(self, image):
|
23 |
height, width = image.shape[:2]
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
return
|
34 |
|
35 |
def analyze_frame(self, frame: np.ndarray) -> str:
|
36 |
if frame is None:
|
37 |
return "No frame received"
|
38 |
-
|
39 |
# Convert and resize image
|
40 |
if len(frame.shape) == 2:
|
41 |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
@@ -48,9 +47,9 @@ def create_monitor_interface():
|
|
48 |
# High quality image for better analysis
|
49 |
buffered = io.BytesIO()
|
50 |
frame_pil.save(buffered,
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
55 |
image_url = f"data:image/jpeg;base64,{img_base64}"
|
56 |
|
@@ -63,24 +62,24 @@ def create_monitor_interface():
|
|
63 |
"content": [
|
64 |
{
|
65 |
"type": "text",
|
66 |
-
"text": """Analyze this workplace image for safety conditions and hazards. Focus
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
},
|
85 |
{
|
86 |
"type": "image_url",
|
@@ -91,15 +90,48 @@ def create_monitor_interface():
|
|
91 |
]
|
92 |
}
|
93 |
],
|
94 |
-
temperature=0.
|
95 |
max_tokens=500,
|
96 |
stream=False
|
97 |
)
|
98 |
return completion.choices[0].message.content
|
99 |
except Exception as e:
|
100 |
-
print(f"
|
101 |
return f"Analysis Error: {str(e)}"
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def draw_observations(self, image, observations):
|
104 |
"""Draw accurate bounding boxes based on safety issue locations."""
|
105 |
height, width = image.shape[:2]
|
@@ -110,7 +142,6 @@ def create_monitor_interface():
|
|
110 |
|
111 |
def get_region_coordinates(position: str) -> tuple:
|
112 |
"""Get coordinates based on position description."""
|
113 |
-
# Basic regions
|
114 |
regions = {
|
115 |
'center': (width//3, height//3, 2*width//3, 2*height//3),
|
116 |
'background': (0, 0, width, height),
|
@@ -122,7 +153,9 @@ def create_monitor_interface():
|
|
122 |
'bottom-left': (0, 2*height//3, width//3, height),
|
123 |
'bottom': (width//3, 2*height//3, 2*width//3, height),
|
124 |
'bottom-right': (2*width//3, 2*height//3, width, height),
|
125 |
-
'ground': (0, 2*height//3, width, height)
|
|
|
|
|
126 |
}
|
127 |
|
128 |
# Find best matching region
|
@@ -131,7 +164,7 @@ def create_monitor_interface():
|
|
131 |
if key in position:
|
132 |
return regions[key]
|
133 |
|
134 |
-
return regions['center']
|
135 |
|
136 |
for idx, obs in enumerate(observations):
|
137 |
color = self.colors[idx % len(self.colors)]
|
@@ -152,51 +185,17 @@ def create_monitor_interface():
|
|
152 |
|
153 |
# Draw text background
|
154 |
cv2.rectangle(image,
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
|
159 |
# Draw text
|
160 |
cv2.putText(image, label,
|
161 |
-
|
162 |
-
|
163 |
|
164 |
return image
|
165 |
|
166 |
-
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
167 |
-
if frame is None:
|
168 |
-
return None, "No image provided"
|
169 |
-
|
170 |
-
analysis = self.analyze_frame(frame)
|
171 |
-
display_frame = frame.copy()
|
172 |
-
|
173 |
-
# Parse observations from the formatted response
|
174 |
-
observations = []
|
175 |
-
lines = analysis.split('\n')
|
176 |
-
for line in lines:
|
177 |
-
# Look for location tags in the line
|
178 |
-
if '<location>' in line and '</location>' in line:
|
179 |
-
start = line.find('<location>') + len('<location>')
|
180 |
-
end = line.find('</location>')
|
181 |
-
location = line[start:end].strip()
|
182 |
-
|
183 |
-
# Get the description that follows the location tag
|
184 |
-
desc_start = line.find('</location>') + len('</location>:')
|
185 |
-
description = line[desc_start:].strip()
|
186 |
-
|
187 |
-
if location and description:
|
188 |
-
observations.append({
|
189 |
-
'location': location,
|
190 |
-
'description': description
|
191 |
-
})
|
192 |
-
|
193 |
-
# Draw observations if we found any
|
194 |
-
if observations:
|
195 |
-
annotated_frame = self.draw_observations(display_frame, observations)
|
196 |
-
return annotated_frame, analysis
|
197 |
-
|
198 |
-
return display_frame, analysis
|
199 |
-
|
200 |
# Create the main interface
|
201 |
monitor = SafetyMonitor()
|
202 |
|
@@ -225,6 +224,13 @@ def create_monitor_interface():
|
|
225 |
outputs=[output_image, analysis_text]
|
226 |
)
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
return demo
|
229 |
|
230 |
demo = create_monitor_interface()
|
|
|
7 |
import io
|
8 |
import os
|
9 |
import base64
|
|
|
10 |
|
11 |
def create_monitor_interface():
|
12 |
api_key = os.getenv("GROQ_API_KEY")
|
|
|
15 |
def __init__(self):
|
16 |
self.client = Groq()
|
17 |
self.model_name = "llama-3.2-90b-vision-preview"
|
18 |
+
self.max_image_size = (800, 800)
|
19 |
+
self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)]
|
20 |
|
21 |
def resize_image(self, image):
|
22 |
height, width = image.shape[:2]
|
23 |
+
if height > self.max_image_size[1] or width > self.max_image_size[0]:
|
24 |
+
aspect = width / height
|
25 |
+
if width > height:
|
26 |
+
new_width = self.max_image_size[0]
|
27 |
+
new_height = int(new_width / aspect)
|
28 |
+
else:
|
29 |
+
new_height = self.max_image_size[1]
|
30 |
+
new_width = int(new_height * aspect)
|
31 |
+
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
32 |
+
return image
|
33 |
|
34 |
def analyze_frame(self, frame: np.ndarray) -> str:
|
35 |
if frame is None:
|
36 |
return "No frame received"
|
37 |
+
|
38 |
# Convert and resize image
|
39 |
if len(frame.shape) == 2:
|
40 |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
|
|
|
47 |
# High quality image for better analysis
|
48 |
buffered = io.BytesIO()
|
49 |
frame_pil.save(buffered,
|
50 |
+
format="JPEG",
|
51 |
+
quality=95,
|
52 |
+
optimize=True)
|
53 |
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
54 |
image_url = f"data:image/jpeg;base64,{img_base64}"
|
55 |
|
|
|
62 |
"content": [
|
63 |
{
|
64 |
"type": "text",
|
65 |
+
"text": """Analyze this workplace image for safety conditions and hazards. Focus on:
|
66 |
+
|
67 |
+
1. Work posture and ergonomics
|
68 |
+
2. PPE and safety equipment usage
|
69 |
+
3. Tool handling and techniques
|
70 |
+
4. Environmental conditions
|
71 |
+
5. Equipment and machinery safety
|
72 |
+
6. Ground conditions and hazards
|
73 |
+
|
74 |
+
Describe each safety condition observed, using this exact format:
|
75 |
+
- <location>position</location>: detailed safety observation
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
- <location>center</location>: Improper kneeling posture without knee protection, risking joint injury
|
79 |
+
- <location>background</location>: Heavy machinery operating in close proximity creating hazard zone
|
80 |
+
- <location>ground</location>: Uneven surface and debris creating trip hazards
|
81 |
+
|
82 |
+
Be specific about locations and safety concerns."""
|
83 |
},
|
84 |
{
|
85 |
"type": "image_url",
|
|
|
90 |
]
|
91 |
}
|
92 |
],
|
93 |
+
temperature=0.5,
|
94 |
max_tokens=500,
|
95 |
stream=False
|
96 |
)
|
97 |
return completion.choices[0].message.content
|
98 |
except Exception as e:
|
99 |
+
print(f"Analysis error: {str(e)}")
|
100 |
return f"Analysis Error: {str(e)}"
|
101 |
|
102 |
+
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
|
103 |
+
if frame is None:
|
104 |
+
return None, "No image provided"
|
105 |
+
|
106 |
+
analysis = self.analyze_frame(frame)
|
107 |
+
display_frame = frame.copy()
|
108 |
+
|
109 |
+
# Parse observations from the formatted response
|
110 |
+
observations = []
|
111 |
+
lines = analysis.split('\n')
|
112 |
+
for line in lines:
|
113 |
+
if '<location>' in line and '</location>' in line:
|
114 |
+
start = line.find('<location>') + len('<location>')
|
115 |
+
end = line.find('</location>')
|
116 |
+
location = line[start:end].strip()
|
117 |
+
|
118 |
+
# Get the description that follows the location tags
|
119 |
+
desc_start = line.find('</location>') + len('</location>:')
|
120 |
+
description = line[desc_start:].strip()
|
121 |
+
|
122 |
+
if location and description:
|
123 |
+
observations.append({
|
124 |
+
'location': location,
|
125 |
+
'description': description
|
126 |
+
})
|
127 |
+
|
128 |
+
# Draw observations if we found any
|
129 |
+
if observations:
|
130 |
+
annotated_frame = self.draw_observations(display_frame, observations)
|
131 |
+
return annotated_frame, analysis
|
132 |
+
|
133 |
+
return display_frame, analysis
|
134 |
+
|
135 |
def draw_observations(self, image, observations):
|
136 |
"""Draw accurate bounding boxes based on safety issue locations."""
|
137 |
height, width = image.shape[:2]
|
|
|
142 |
|
143 |
def get_region_coordinates(position: str) -> tuple:
|
144 |
"""Get coordinates based on position description."""
|
|
|
145 |
regions = {
|
146 |
'center': (width//3, height//3, 2*width//3, 2*height//3),
|
147 |
'background': (0, 0, width, height),
|
|
|
153 |
'bottom-left': (0, 2*height//3, width//3, height),
|
154 |
'bottom': (width//3, 2*height//3, 2*width//3, height),
|
155 |
'bottom-right': (2*width//3, 2*height//3, width, height),
|
156 |
+
'ground': (0, 2*height//3, width, height),
|
157 |
+
'machinery': (0, 0, width//2, height),
|
158 |
+
'work-area': (width//4, height//4, 3*width//4, 3*height//4)
|
159 |
}
|
160 |
|
161 |
# Find best matching region
|
|
|
164 |
if key in position:
|
165 |
return regions[key]
|
166 |
|
167 |
+
return regions['center']
|
168 |
|
169 |
for idx, obs in enumerate(observations):
|
170 |
color = self.colors[idx % len(self.colors)]
|
|
|
185 |
|
186 |
# Draw text background
|
187 |
cv2.rectangle(image,
|
188 |
+
(text_x, text_y - label_size[1] - padding),
|
189 |
+
(text_x + label_size[0] + padding, text_y),
|
190 |
+
color, -1)
|
191 |
|
192 |
# Draw text
|
193 |
cv2.putText(image, label,
|
194 |
+
(text_x + padding//2, text_y - padding//2),
|
195 |
+
font, font_scale, (255, 255, 255), thickness)
|
196 |
|
197 |
return image
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
# Create the main interface
|
200 |
monitor = SafetyMonitor()
|
201 |
|
|
|
224 |
outputs=[output_image, analysis_text]
|
225 |
)
|
226 |
|
227 |
+
gr.Markdown("""
|
228 |
+
## Instructions:
|
229 |
+
1. Upload an image to analyze safety conditions
|
230 |
+
2. View annotated results showing safety concerns
|
231 |
+
3. Read detailed analysis of identified issues
|
232 |
+
""")
|
233 |
+
|
234 |
return demo
|
235 |
|
236 |
demo = create_monitor_interface()
|