import gradio as gr from gradio.components import Image, Textbox, Markdown import cv2 import numpy as np from groq import Groq import time from PIL import Image as PILImage import io import os def create_monitor_interface(): api_key = os.getenv("GROQ_API_KEY") if not api_key: with gr.Blocks() as demo: gr.Markdown(""" # ⚠️ Groq API Key Required ## Setup Instructions for Hugging Face Space: 1. Go to your Space's Settings tab 2. Scroll down to "Repository Secrets" 3. Click "New Secret" 4. Enter: - Secret name: `GROQ_API_KEY` - Secret value: Your Groq API key 5. Click "Add secret" 6. Rebuild the Space Once configured, the safety monitoring system will be available. """) return demo class SafetyMonitor: def __init__(self, model_name: str = "mixtral-8x7b-vision"): self.client = Groq(api_key=api_key) self.model_name = model_name def analyze_frame(self, frame: np.ndarray) -> str: if frame is None: return "No frame received" frame_pil = PILImage.fromarray(frame) img_byte_arr = io.BytesIO() frame_pil.save(img_byte_arr, format='JPEG') img_byte_arr = img_byte_arr.getvalue() prompt = """Analyze this image for workplace safety issues. Focus on: 1. PPE usage (helmets, vests, etc.) 2. Unsafe behaviors 3. Equipment safety 4. Environmental hazards Provide specific observations.""" try: completion = self.client.chat.completions.create( messages=[ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image", "image": img_byte_arr} ] } ], model=self.model_name, max_tokens=200, temperature=0.2 ) return completion.choices[0].message.content except Exception as e: return f"Analysis Error: {str(e)}" def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]: if frame is None: return None, "No frame received" analysis = self.analyze_frame(frame) display_frame = frame.copy() # Add text overlay overlay = display_frame.copy() cv2.rectangle(overlay, (5, 5), (640, 200), (0, 0, 0), -1) cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame) y_position = 30 for line in analysis.split('\n'): cv2.putText(display_frame, line[:80], (10, y_position), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) y_position += 30 return display_frame, analysis # Create the main interface monitor = SafetyMonitor() with gr.Blocks() as demo: gr.Markdown("# Real-time Safety Monitoring System") with gr.Row(): input_image = Image(label="Input Image", type="numpy", tool="upload") output_image = Image(label="Analysis Feed", type="numpy") analysis_text = Textbox(label="Safety Analysis", lines=5) def analyze_image(image): if image is None: return None, "No image provided" processed_frame, analysis = monitor.process_frame(image) return processed_frame, analysis input_image.change( fn=analyze_image, inputs=[input_image], outputs=[output_image, analysis_text], ) gr.Markdown(""" ## Instructions: 1. Upload an image using the input panel 2. The system will automatically analyze the image for safety concerns 3. Results will be shown in the analysis feed and text box """) return demo demo = create_monitor_interface() demo.launch()