import gradio as gr import cv2 import numpy as np from groq import Groq import time from PIL import Image as PILImage import io import os import base64 def create_monitor_interface(): api_key = os.getenv("GROQ_API_KEY") class SafetyMonitor: def __init__(self): self.client = Groq() self.model_name = "llama-3.2-90b-vision-preview" self.max_image_size = (800, 800) self.colors = [(0, 0, 255), (255, 0, 0), (0, 255, 0), (255, 255, 0), (255, 0, 255)] def resize_image(self, image): height, width = image.shape[:2] if height > self.max_image_size[1] or width > self.max_image_size[0]: aspect = width / height if width > height: new_width = self.max_image_size[0] new_height = int(new_width / aspect) else: new_height = self.max_image_size[1] new_width = int(new_height * aspect) return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) return image def analyze_frame(self, frame: np.ndarray) -> str: if frame is None: return "No frame received" # Convert and resize image if len(frame.shape) == 2: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) elif len(frame.shape) == 3 and frame.shape[2] == 4: frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) frame = self.resize_image(frame) frame_pil = PILImage.fromarray(frame) # High quality image for better analysis buffered = io.BytesIO() frame_pil.save(buffered, format="JPEG", quality=95, optimize=True) img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') image_url = f"data:image/jpeg;base64,{img_base64}" try: completion = self.client.chat.completions.create( model=self.model_name, messages=[ { "role": "user", "content": [ { "type": "text", "text": """Analyze this workplace image for safety conditions and hazards. Focus on: 1. Work posture and ergonomics 2. PPE and safety equipment usage 3. Tool handling and techniques 4. Environmental conditions 5. Equipment and machinery safety 6. Ground conditions and hazards Describe each safety condition observed, using this exact format: - position: detailed safety observation Examples: - center: Improper kneeling posture without knee protection, risking joint injury - background: Heavy machinery operating in close proximity creating hazard zone - ground: Uneven surface and debris creating trip hazards Be specific about locations and safety concerns.""" }, { "type": "image_url", "image_url": { "url": image_url } } ] } ], temperature=0.5, max_tokens=500, stream=False ) return completion.choices[0].message.content except Exception as e: print(f"Analysis error: {str(e)}") return f"Analysis Error: {str(e)}" def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]: if frame is None: return None, "No image provided" analysis = self.analyze_frame(frame) display_frame = frame.copy() # Parse observations from the formatted response observations = [] lines = analysis.split('\n') for line in lines: if '' in line and '' in line: start = line.find('') + len('') end = line.find('') location = line[start:end].strip() # Get the description that follows the location tags desc_start = line.find('') + len(':') description = line[desc_start:].strip() if location and description: observations.append({ 'location': location, 'description': description }) # Draw observations if we found any if observations: annotated_frame = self.draw_observations(display_frame, observations) return annotated_frame, analysis return display_frame, analysis def draw_observations(self, image, observations): """Draw accurate bounding boxes based on safety issue locations.""" height, width = image.shape[:2] font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 thickness = 2 padding = 10 def get_region_coordinates(position: str) -> tuple: """Get coordinates based on position description.""" regions = { 'center': (width//3, height//3, 2*width//3, 2*height//3), 'background': (0, 0, width, height), 'top-left': (0, 0, width//3, height//3), 'top': (width//3, 0, 2*width//3, height//3), 'top-right': (2*width//3, 0, width, height//3), 'left': (0, height//3, width//3, 2*height//3), 'right': (2*width//3, height//3, width, 2*height//3), 'bottom-left': (0, 2*height//3, width//3, height), 'bottom': (width//3, 2*height//3, 2*width//3, height), 'bottom-right': (2*width//3, 2*height//3, width, height), 'ground': (0, 2*height//3, width, height), 'machinery': (0, 0, width//2, height), 'work-area': (width//4, height//4, 3*width//4, 3*height//4) } # Find best matching region position = position.lower() for key in regions.keys(): if key in position: return regions[key] return regions['center'] for idx, obs in enumerate(observations): color = self.colors[idx % len(self.colors)] # Get coordinates for this observation x1, y1, x2, y2 = get_region_coordinates(obs['location']) # Draw rectangle cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) # Add label with background label = obs['description'][:50] + "..." if len(obs['description']) > 50 else obs['description'] label_size, _ = cv2.getTextSize(label, font, font_scale, thickness) # Position text above the box text_x = max(0, x1) text_y = max(label_size[1] + padding, y1 - padding) # Draw text background cv2.rectangle(image, (text_x, text_y - label_size[1] - padding), (text_x + label_size[0] + padding, text_y), color, -1) # Draw text cv2.putText(image, label, (text_x + padding//2, text_y - padding//2), font, font_scale, (255, 255, 255), thickness) return image # Create the main interface monitor = SafetyMonitor() with gr.Blocks() as demo: gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision") with gr.Row(): input_image = gr.Image(label="Upload Image") output_image = gr.Image(label="Annotated Results") analysis_text = gr.Textbox(label="Detailed Analysis", lines=5) def analyze_image(image): if image is None: return None, "No image provided" try: processed_frame, analysis = monitor.process_frame(image) return processed_frame, analysis except Exception as e: print(f"Processing error: {str(e)}") return None, f"Error processing image: {str(e)}" input_image.change( fn=analyze_image, inputs=input_image, outputs=[output_image, analysis_text] ) gr.Markdown(""" ## Instructions: 1. Upload an image to analyze safety conditions 2. View annotated results showing safety concerns 3. Read detailed analysis of identified issues """) return demo demo = create_monitor_interface() demo.launch()