import gradio as gr import cv2 import numpy as np from groq import Groq import time from PIL import Image as PILImage import io import os import base64 def create_monitor_interface(): api_key = os.getenv("GROQ_API_KEY") if not api_key: with gr.Blocks() as demo: gr.Markdown(""" # ⚠️ Groq API Key Required ## Setup Instructions for Hugging Face Space: 1. Go to your Space's Settings tab 2. Scroll down to "Repository Secrets" 3. Click "New Secret" 4. Enter: - Secret name: `GROQ_API_KEY` - Secret value: Your Groq API key 5. Click "Add secret" 6. Rebuild the Space Once configured, the safety monitoring system will be available. """) return demo class SafetyMonitor: def __init__(self, model_name: str = "mixtral-8x7b-vision"): self.client = Groq(api_key=api_key) self.model_name = model_name def analyze_frame(self, frame: np.ndarray) -> str: if frame is None: return "No frame received" # Convert numpy array to PIL Image if len(frame.shape) == 2: # If grayscale frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) elif len(frame.shape) == 3 and frame.shape[2] == 4: # If RGBA frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) frame_pil = PILImage.fromarray(frame) # Convert to base64 buffered = io.BytesIO() frame_pil.save(buffered, format="JPEG") img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') prompt = """Analyze this image for workplace safety issues. Focus on: 1. PPE usage (helmets, vests, etc.) 2. Unsafe behaviors 3. Equipment safety 4. Environmental hazards Provide specific observations.""" try: completion = self.client.chat.completions.create( messages=[ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image", "image_url": f"data:image/jpeg;base64,{img_base64}"} ] } ], model=self.model_name, max_tokens=200, temperature=0.2 ) return completion.choices[0].message.content except Exception as e: return f"Analysis Error: {str(e)}" def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]: if frame is None: return None, "No image provided" analysis = self.analyze_frame(frame) display_frame = frame.copy() # Add text overlay overlay = display_frame.copy() height, width = display_frame.shape[:2] cv2.rectangle(overlay, (5, 5), (width-5, 100), (0, 0, 0), -1) cv2.addWeighted(overlay, 0.3, display_frame, 0.7, 0, display_frame) # Add analysis text y_position = 30 lines = analysis.split('\n') for line in lines: cv2.putText(display_frame, line[:80], (10, y_position), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) y_position += 30 if y_position >= 90: # Prevent text from going outside the overlay break return display_frame, analysis # Create the main interface monitor = SafetyMonitor() with gr.Blocks() as demo: gr.Markdown(""" # Safety Monitoring System Upload an image to analyze workplace safety concerns. """) with gr.Row(): input_image = gr.Image(label="Upload Image") output_image = gr.Image(label="Analysis Results") analysis_text = gr.Textbox(label="Detailed Safety Analysis", lines=5) def analyze_image(image): if image is None: return None, "No image provided" try: processed_frame, analysis = monitor.process_frame(image) return processed_frame, analysis except Exception as e: return None, f"Error processing image: {str(e)}" input_image.change( fn=analyze_image, inputs=input_image, outputs=[output_image, analysis_text] ) gr.Markdown(""" ## Instructions: 1. Upload an image using the input panel 2. The system will automatically analyze it for safety concerns 3. View the analyzed image with overlay and detailed analysis below """) return demo demo = create_monitor_interface() demo.launch()