import gradio as gr import cv2 import numpy as np from groq import Groq import time from PIL import Image as PILImage import io import os import base64 import random def create_monitor_interface(): api_key = os.getenv("GROQ_API_KEY") class SafetyMonitor: def __init__(self): self.client = Groq() self.model_name = "llama-3.2-90b-vision-preview" self.max_image_size = (800, 800) # Increased size for better visibility self.colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)] def resize_image(self, image): height, width = image.shape[:2] aspect = width / height if width > height: new_width = min(self.max_image_size[0], width) new_height = int(new_width / aspect) else: new_height = min(self.max_image_size[1], height) new_width = int(new_height * aspect) return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) def analyze_frame(self, frame: np.ndarray) -> str: if frame is None: return "No frame received" # Convert and resize image if len(frame.shape) == 2: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) elif len(frame.shape) == 3 and frame.shape[2] == 4: frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) frame = self.resize_image(frame) frame_pil = PILImage.fromarray(frame) # High quality image for better analysis buffered = io.BytesIO() frame_pil.save(buffered, format="JPEG", quality=95, optimize=True) img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') image_url = f"data:image/jpeg;base64,{img_base64}" try: completion = self.client.chat.completions.create( model=self.model_name, messages=[ { "role": "user", "content": [ { "type": "text", "text": """As a comprehensive safety expert, analyze this image for ALL potential safety concerns and hazards, including: - Personal Protective Equipment (PPE) - Ergonomic issues and posture - Fire and electrical hazards - Chemical and environmental hazards - Machine and equipment safety - Fall protection and heights - Material handling and storage - Emergency access and exits - Housekeeping and organization - Lighting and visibility - Ventilation and air quality - Tool safety and maintenance For each safety issue identified, provide: 1. Exact location in the image (be specific: top-left, center-right, bottom, etc.) 2. Type of safety concern 3. Potential risk or hazard 4. Relevant safety violation Format each observation exactly as: - position:detailed safety issue description Example: - top-right:Exposed electrical wiring creating shock hazard - bottom-left:Improperly stored chemicals without labeling Identify ALL safety issues, not just the obvious ones.""" }, { "type": "image_url", "image_url": { "url": image_url } } ] } ], temperature=0.7, max_tokens=500, stream=False ) return completion.choices[0].message.content except Exception as e: print(f"Detailed error: {str(e)}") return f"Analysis Error: {str(e)}" def draw_observations(self, image, observations): """Draw accurate bounding boxes based on safety issue locations.""" height, width = image.shape[:2] font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 thickness = 2 padding = 10 def get_region_coordinates(position: str) -> tuple: """Get coordinates based on position description.""" # Basic regions regions = { 'top-left': (0, 0, width//3, height//3), 'top': (width//3, 0, 2*width//3, height//3), 'top-right': (2*width//3, 0, width, height//3), 'center-left': (0, height//3, width//3, 2*height//3), 'center': (width//3, height//3, 2*width//3, 2*height//3), 'center-right': (2*width//3, height//3, width, 2*height//3), 'bottom-left': (0, 2*height//3, width//3, height), 'bottom': (width//3, 2*height//3, 2*width//3, height), 'bottom-right': (2*width//3, 2*height//3, width, height), 'left': (0, height//4, width//3, 3*height//4), 'right': (2*width//3, height//4, width, 3*height//4) } # Find best matching region best_match = 'center' max_words = 0 pos_lower = position.lower() for region in regions.keys(): words = region.split('-') matches = sum(1 for word in words if word in pos_lower) if matches > max_words: max_words = matches best_match = region return regions[best_match] for idx, obs in enumerate(observations): color = self.colors[idx % len(self.colors)] # Parse location and description parts = obs.split(':') if len(parts) >= 2: position = parts[0] description = ':'.join(parts[1:]) # Get region coordinates x1, y1, x2, y2 = get_region_coordinates(position) # Draw rectangle cv2.rectangle(image, (x1, y1), (x2, y2), color, 2) # Add label with background label = description[:50] + "..." if len(description) > 50 else description label_size, _ = cv2.getTextSize(label, font, font_scale, thickness) # Position text above the box text_x = max(0, x1) text_y = max(label_size[1] + padding, y1 - padding) # Draw text background cv2.rectangle(image, (text_x, text_y - label_size[1] - padding), (text_x + label_size[0] + padding, text_y), color, -1) # Draw text cv2.putText(image, label, (text_x + padding//2, text_y - padding//2), font, font_scale, (255, 255, 255), thickness) return image def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]: if frame is None: return None, "No image provided" analysis = self.analyze_frame(frame) display_frame = self.resize_image(frame.copy()) # Parse observations from the analysis observations = [] for line in analysis.split('\n'): line = line.strip() if line.startswith('-'): # Extract text between tags if present if '' in line and '' in line: start = line.find('') + len('') end = line.find('') observation = line[end + len(''):].strip() else: observation = line[1:].strip() # Remove the dash if observation: observations.append(observation) # Draw observations on the image annotated_frame = self.draw_observations(display_frame, observations) return annotated_frame, analysis # Create the main interface monitor = SafetyMonitor() with gr.Blocks() as demo: gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision") with gr.Row(): input_image = gr.Image(label="Upload Image") output_image = gr.Image(label="Annotated Results") analysis_text = gr.Textbox(label="Detailed Analysis", lines=5) def analyze_image(image): if image is None: return None, "No image provided" try: processed_frame, analysis = monitor.process_frame(image) return processed_frame, analysis except Exception as e: print(f"Processing error: {str(e)}") return None, f"Error processing image: {str(e)}" input_image.change( fn=analyze_image, inputs=input_image, outputs=[output_image, analysis_text] ) return demo demo = create_monitor_interface() demo.launch()