import gradio as gr import cv2 import numpy as np from groq import Groq import time from PIL import Image as PILImage import io import os import base64 import random def create_monitor_interface(): api_key = os.getenv("GROQ_API_KEY") class SafetyMonitor: def __init__(self): self.client = Groq() self.model_name = "llama-3.2-90b-vision-preview" self.max_image_size = (800, 800) # Increased size for better visibility self.colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)] def resize_image(self, image): height, width = image.shape[:2] aspect = width / height if width > height: new_width = min(self.max_image_size[0], width) new_height = int(new_width / aspect) else: new_height = min(self.max_image_size[1], height) new_width = int(new_height * aspect) return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA) def analyze_frame(self, frame: np.ndarray) -> str: if frame is None: return "No frame received" # Convert and resize image if len(frame.shape) == 2: frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) elif len(frame.shape) == 3 and frame.shape[2] == 4: frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) frame = self.resize_image(frame) frame_pil = PILImage.fromarray(frame) # Convert to base64 with minimal quality buffered = io.BytesIO() frame_pil.save(buffered, format="JPEG", quality=50, optimize=True) img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8') image_url = f"data:image/jpeg;base64,{img_base64}" try: completion = self.client.chat.completions.create( model=self.model_name, messages=[ { "role": "user", "content": [ { "type": "text", "text": """Analyze this workplace image and describe each safety concern in this format: - Description Use one line per issue, starting with a dash and location in tags.""" }, { "type": "image_url", "image_url": { "url": image_url } } ] }, { "role": "assistant", "content": "" } ], temperature=0.1, max_tokens=500, top_p=1, stream=False, stop=None ) return completion.choices[0].message.content except Exception as e: print(f"Detailed error: {str(e)}") return f"Analysis Error: {str(e)}" def draw_observations(self, image, observations): height, width = image.shape[:2] font = cv2.FONT_HERSHEY_SIMPLEX font_scale = 0.5 thickness = 2 # Generate random positions for each observation for idx, obs in enumerate(observations): color = self.colors[idx % len(self.colors)] # Generate random box position box_width = width // 3 box_height = height // 3 x = random.randint(0, width - box_width) y = random.randint(0, height - box_height) # Draw rectangle cv2.rectangle(image, (x, y), (x + box_width, y + box_height), color, 2) # Add label with background label = obs[:40] + "..." if len(obs) > 40 else obs label_size = cv2.getTextSize(label, font, font_scale, thickness)[0] cv2.rectangle(image, (x, y - 20), (x + label_size[0], y), color, -1) cv2.putText(image, label, (x, y - 5), font, font_scale, (255, 255, 255), thickness) return image def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]: if frame is None: return None, "No image provided" analysis = self.analyze_frame(frame) display_frame = self.resize_image(frame.copy()) # Parse observations from the analysis observations = [] for line in analysis.split('\n'): line = line.strip() if line.startswith('-'): # Extract text between tags if present if '' in line and '' in line: start = line.find('') + len('') end = line.find('') observation = line[end + len(''):].strip() else: observation = line[1:].strip() # Remove the dash if observation: observations.append(observation) # Draw observations on the image annotated_frame = self.draw_observations(display_frame, observations) return annotated_frame, analysis # Create the main interface monitor = SafetyMonitor() with gr.Blocks() as demo: gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision") with gr.Row(): input_image = gr.Image(label="Upload Image") output_image = gr.Image(label="Annotated Results") analysis_text = gr.Textbox(label="Detailed Analysis", lines=5) def analyze_image(image): if image is None: return None, "No image provided" try: processed_frame, analysis = monitor.process_frame(image) return processed_frame, analysis except Exception as e: print(f"Processing error: {str(e)}") return None, f"Error processing image: {str(e)}" input_image.change( fn=analyze_image, inputs=input_image, outputs=[output_image, analysis_text] ) return demo demo = create_monitor_interface() demo.launch()