import gradio as gr
import cv2
import numpy as np
from groq import Groq
import time
from PIL import Image as PILImage
import io
import os
import base64
import random
def create_monitor_interface():
api_key = os.getenv("GROQ_API_KEY")
class SafetyMonitor:
def __init__(self):
self.client = Groq()
self.model_name = "llama-3.2-90b-vision-preview"
self.max_image_size = (800, 800) # Increased size for better visibility
self.colors = [(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]
def resize_image(self, image):
height, width = image.shape[:2]
aspect = width / height
if width > height:
new_width = min(self.max_image_size[0], width)
new_height = int(new_width / aspect)
else:
new_height = min(self.max_image_size[1], height)
new_width = int(new_height * aspect)
return cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
def analyze_frame(self, frame: np.ndarray) -> str:
if frame is None:
return "No frame received"
# Convert and resize image
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif len(frame.shape) == 3 and frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
frame = self.resize_image(frame)
frame_pil = PILImage.fromarray(frame)
# Convert to base64 with minimal quality
buffered = io.BytesIO()
frame_pil.save(buffered,
format="JPEG",
quality=50,
optimize=True)
img_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
image_url = f"data:image/jpeg;base64,{img_base64}"
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": """Analyze this workplace image and describe each safety concern in this format:
- Description
Use one line per issue, starting with a dash and location in tags."""
},
{
"type": "image_url",
"image_url": {
"url": image_url
}
}
]
},
{
"role": "assistant",
"content": ""
}
],
temperature=0.1,
max_tokens=500,
top_p=1,
stream=False,
stop=None
)
return completion.choices[0].message.content
except Exception as e:
print(f"Detailed error: {str(e)}")
return f"Analysis Error: {str(e)}"
def draw_observations(self, image, observations):
height, width = image.shape[:2]
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.5
thickness = 2
# Generate random positions for each observation
for idx, obs in enumerate(observations):
color = self.colors[idx % len(self.colors)]
# Generate random box position
box_width = width // 3
box_height = height // 3
x = random.randint(0, width - box_width)
y = random.randint(0, height - box_height)
# Draw rectangle
cv2.rectangle(image, (x, y), (x + box_width, y + box_height), color, 2)
# Add label with background
label = obs[:40] + "..." if len(obs) > 40 else obs
label_size = cv2.getTextSize(label, font, font_scale, thickness)[0]
cv2.rectangle(image, (x, y - 20), (x + label_size[0], y), color, -1)
cv2.putText(image, label, (x, y - 5), font, font_scale, (255, 255, 255), thickness)
return image
def process_frame(self, frame: np.ndarray) -> tuple[np.ndarray, str]:
if frame is None:
return None, "No image provided"
analysis = self.analyze_frame(frame)
display_frame = self.resize_image(frame.copy())
# Parse observations from the analysis
observations = []
for line in analysis.split('\n'):
line = line.strip()
if line.startswith('-'):
# Extract text between tags if present
if '' in line and '' in line:
start = line.find('') + len('')
end = line.find('')
observation = line[end + len(''):].strip()
else:
observation = line[1:].strip() # Remove the dash
if observation:
observations.append(observation)
# Draw observations on the image
annotated_frame = self.draw_observations(display_frame, observations)
return annotated_frame, analysis
# Create the main interface
monitor = SafetyMonitor()
with gr.Blocks() as demo:
gr.Markdown("# Safety Analysis System powered by Llama 3.2 90b vision")
with gr.Row():
input_image = gr.Image(label="Upload Image")
output_image = gr.Image(label="Annotated Results")
analysis_text = gr.Textbox(label="Detailed Analysis", lines=5)
def analyze_image(image):
if image is None:
return None, "No image provided"
try:
processed_frame, analysis = monitor.process_frame(image)
return processed_frame, analysis
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing image: {str(e)}"
input_image.change(
fn=analyze_image,
inputs=input_image,
outputs=[output_image, analysis_text]
)
return demo
demo = create_monitor_interface()
demo.launch()