|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
import gradio as gr |
|
import numpy as np |
|
|
|
|
|
model_id = "vikhyatk/moondream2" |
|
revision = "2024-05-20" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, trust_remote_code=True, revision=revision |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision) |
|
|
|
def analyze_image_direct(image, question): |
|
|
|
|
|
|
|
enc_image = model.encode_image(image) |
|
|
|
|
|
|
|
answer = model.answer_question(enc_image, question, tokenizer) |
|
|
|
return answer |
|
|
|
|
|
iface = gr.Interface(fn=analyze_image_direct, |
|
inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your question here...")], |
|
outputs='text', |
|
title="Direct Image Question Answering", |
|
description="Upload an image and ask a question about it directly using the model.") |
|
|
|
|
|
iface.launch() |