|
import torch |
|
|
|
import gradio as gr |
|
import yt_dlp as youtube_dl |
|
import numpy as np |
|
from datasets import Dataset, Audio |
|
from scipy.io import wavfile |
|
|
|
from transformers import pipeline |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
import tempfile |
|
import os |
|
import time |
|
|
|
|
|
MODEL_NAME = "openai/whisper-large-v3" |
|
BATCH_SIZE = 8 |
|
FILE_LIMIT_MB = 1000 |
|
YT_LENGTH_LIMIT_S = 3600 |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
|
|
def transcribe(inputs_path, task, dataset_name, oauth_token: gr.OAuthToken): |
|
if inputs_path is None: |
|
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") |
|
|
|
sampling_rate, inputs = wavfile.read(inputs_path) |
|
|
|
out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) |
|
|
|
text = out["text"] |
|
|
|
chunks = naive_postprocess_whisper_chunks(out["chunks"]) |
|
|
|
transcripts = [] |
|
audios = [] |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
for i,chunk in enumerate(chunks): |
|
begin, end = chunk["timestamp"] |
|
begin, end = int(begin*sampling_rate), int(end*sampling_rate) |
|
|
|
arr = inputs[begin:end] |
|
path = os.path.join(tmpdirname, f"{i}.wav") |
|
wavfile.write(path, sampling_rate, arr) |
|
audios.append(path) |
|
transcripts.append(chunk["text"]) |
|
|
|
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio()) |
|
|
|
|
|
dataset.push_to_hub(dataset_name, token=oauth_token) |
|
|
|
return text |
|
|
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def download_yt_audio(yt_url, filename): |
|
info_loader = youtube_dl.YoutubeDL() |
|
|
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise gr.Error(str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
|
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
|
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
|
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise gr.Error(str(err)) |
|
|
|
|
|
def yt_transcribe(yt_url, task, dataset_name, oauth_token: gr.OAuthToken, max_filesize=75.0, dataset_sampling_rate = 24000): |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
download_yt_audio(yt_url, filepath) |
|
with open(filepath, "rb") as f: |
|
inputs_path = f.read() |
|
|
|
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} |
|
|
|
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True) |
|
|
|
text = out["text"] |
|
|
|
chunks = naive_postprocess_whisper_chunks(out["chunks"]) |
|
|
|
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate) |
|
|
|
transcripts = [] |
|
audios = [] |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
for i,chunk in enumerate(chunks): |
|
begin, end = chunk["timestamp"] |
|
begin, end = int(begin*dataset_sampling_rate), int(end*dataset_sampling_rate) |
|
|
|
arr = inputs[begin:end] |
|
path = os.path.join(tmpdirname, f"{i}.wav") |
|
wavfile.write(path, dataset_sampling_rate, arr) |
|
audios.append(path) |
|
transcripts.append(chunk["text"]) |
|
|
|
dataset = Dataset.from_dict({"audio": audios, "transcript": transcripts}).cast_column("audio", Audio()) |
|
|
|
|
|
dataset.push_to_hub(dataset_name, token=oauth_token) |
|
|
|
|
|
return html_embed_str, text |
|
|
|
|
|
def naive_postprocess_whisper_chunks(chunks, stop_chars = ".!:;?", min_duration = 5): |
|
new_chunks = [] |
|
|
|
while chunks: |
|
current_chunk = chunks.pop(0) |
|
begin, end = current_chunk["timestamp"] |
|
text = current_chunk["text"] |
|
|
|
while chunks and (text[-1] not in stop_chars or (end-begin<min_duration)): |
|
ch = chunks.pop(0) |
|
end = ch["timestamp"][1] |
|
text = "".join([text, ch["text"]]) |
|
|
|
new_chunks.append({ |
|
"text": text.strip(), |
|
"timestamp": (begin, end), |
|
}) |
|
print(f"LENGTH CHUNK #{len(new_chunks)}: {end-begin}s") |
|
|
|
return new_chunks |
|
|
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.Audio(type="filepath"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name"), |
|
], |
|
outputs="text", |
|
theme="huggingface", |
|
title="Create your own TTS dataset using your own recordings", |
|
description=( |
|
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it." |
|
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files" |
|
" of arbitrary length. It then merge chunks of audio and push it to the hub." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
yt_transcribe = gr.Interface( |
|
fn=yt_transcribe, |
|
inputs=[ |
|
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
gr.Textbox(lines=1, placeholder="Place your new dataset name here", label="Dataset name"), |
|
], |
|
outputs=["html", "text"], |
|
theme="huggingface", |
|
title="Create your own TTS dataset using Youtube", |
|
description=( |
|
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it." |
|
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files" |
|
" of arbitrary length. It then merge chunks of audio and push it to the hub." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
with demo: |
|
with gr.Row(): |
|
gr.LoginButton() |
|
gr.LogoutButton() |
|
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Microphone or Audio file", "YouTube"]) |
|
|
|
demo.launch(debug=True) |
|
|