Spaces:
Runtime error
Runtime error
File size: 18,698 Bytes
3d62af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
#!/usr/bin/env python
"""
This script runs a Gradio App for the Open-Sora model.
Usage:
python demo.py <config-path>
"""
import argparse
import importlib
import os
import subprocess
import sys
import re
import json
import math
import spaces
import torch
import gradio as gr
MODEL_TYPES = ["v1.1"]
CONFIG_MAP = {
"v1.1-stage2": "configs/opensora-v1-1/inference/sample-ref.py",
"v1.1-stage3": "configs/opensora-v1-1/inference/sample-ref.py",
}
HF_STDIT_MAP = {
"v1.1-stage2": "hpcai-tech/OpenSora-STDiT-v2-stage2",
"v1.1-stage3": "hpcai-tech/OpenSora-STDiT-v2-stage3",
}
RESOLUTION_MAP = {
"144p": (144, 256),
"240p": (240, 426),
"360p": (360, 480),
"480p": (480, 858),
"720p": (720, 1280),
"1080p": (1080, 1920)
}
# ============================
# Utils
# ============================
def collect_references_batch(reference_paths, vae, image_size):
from opensora.datasets.utils import read_from_path
refs_x = []
for reference_path in reference_paths:
if reference_path is None:
refs_x.append([])
continue
ref_path = reference_path.split(";")
ref = []
for r_path in ref_path:
r = read_from_path(r_path, image_size, transform_name="resize_crop")
r_x = vae.encode(r.unsqueeze(0).to(vae.device, vae.dtype))
r_x = r_x.squeeze(0)
ref.append(r_x)
refs_x.append(ref)
# refs_x: [batch, ref_num, C, T, H, W]
return refs_x
def process_mask_strategy(mask_strategy):
mask_batch = []
mask_strategy = mask_strategy.split(";")
for mask in mask_strategy:
mask_group = mask.split(",")
assert len(mask_group) >= 1 and len(mask_group) <= 6, f"Invalid mask strategy: {mask}"
if len(mask_group) == 1:
mask_group.extend(["0", "0", "0", "1", "0"])
elif len(mask_group) == 2:
mask_group.extend(["0", "0", "1", "0"])
elif len(mask_group) == 3:
mask_group.extend(["0", "1", "0"])
elif len(mask_group) == 4:
mask_group.extend(["1", "0"])
elif len(mask_group) == 5:
mask_group.append("0")
mask_batch.append(mask_group)
return mask_batch
def apply_mask_strategy(z, refs_x, mask_strategys, loop_i):
masks = []
for i, mask_strategy in enumerate(mask_strategys):
mask = torch.ones(z.shape[2], dtype=torch.float, device=z.device)
if mask_strategy is None:
masks.append(mask)
continue
mask_strategy = process_mask_strategy(mask_strategy)
for mst in mask_strategy:
loop_id, m_id, m_ref_start, m_target_start, m_length, edit_ratio = mst
loop_id = int(loop_id)
if loop_id != loop_i:
continue
m_id = int(m_id)
m_ref_start = int(m_ref_start)
m_length = int(m_length)
m_target_start = int(m_target_start)
edit_ratio = float(edit_ratio)
ref = refs_x[i][m_id] # [C, T, H, W]
if m_ref_start < 0:
m_ref_start = ref.shape[1] + m_ref_start
if m_target_start < 0:
# z: [B, C, T, H, W]
m_target_start = z.shape[2] + m_target_start
z[i, :, m_target_start : m_target_start + m_length] = ref[:, m_ref_start : m_ref_start + m_length]
mask[m_target_start : m_target_start + m_length] = edit_ratio
masks.append(mask)
masks = torch.stack(masks)
return masks
def process_prompts(prompts, num_loop):
from opensora.models.text_encoder.t5 import text_preprocessing
ret_prompts = []
for prompt in prompts:
if prompt.startswith("|0|"):
prompt_list = prompt.split("|")[1:]
text_list = []
for i in range(0, len(prompt_list), 2):
start_loop = int(prompt_list[i])
text = prompt_list[i + 1]
text = text_preprocessing(text)
end_loop = int(prompt_list[i + 2]) if i + 2 < len(prompt_list) else num_loop
text_list.extend([text] * (end_loop - start_loop))
assert len(text_list) == num_loop, f"Prompt loop mismatch: {len(text_list)} != {num_loop}"
ret_prompts.append(text_list)
else:
prompt = text_preprocessing(prompt)
ret_prompts.append([prompt] * num_loop)
return ret_prompts
def extract_json_from_prompts(prompts):
additional_infos = []
ret_prompts = []
for prompt in prompts:
parts = re.split(r"(?=[{\[])", prompt)
assert len(parts) <= 2, f"Invalid prompt: {prompt}"
ret_prompts.append(parts[0])
if len(parts) == 1:
additional_infos.append({})
else:
additional_infos.append(json.loads(parts[1]))
return ret_prompts, additional_infos
# ============================
# Runtime Environment
# ============================
def install_dependencies(enable_optimization=False):
"""
Install the required dependencies for the demo if they are not already installed.
"""
def _is_package_available(name) -> bool:
try:
importlib.import_module(name)
return True
except (ImportError, ModuleNotFoundError):
return False
# flash attention is needed no matter optimization is enabled or not
# because Hugging Face transformers detects flash_attn is a dependency in STDiT
# thus, we need to install it no matter what
if not _is_package_available("flash_attn"):
subprocess.run(
f"{sys.executable} -m pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
if enable_optimization:
# install apex for fused layernorm
if not _is_package_available("apex"):
subprocess.run(
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
shell=True,
)
# install ninja
if not _is_package_available("ninja"):
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
# install xformers
if not _is_package_available("xformers"):
subprocess.run(
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
shell=True,
)
# ============================
# Model-related
# ============================
def read_config(config_path):
"""
Read the configuration file.
"""
from mmengine.config import Config
return Config.fromfile(config_path)
def build_models(model_type, config, enable_optimization=False):
"""
Build the models for the given model type and configuration.
"""
# build vae
from opensora.registry import MODELS, build_module
vae = build_module(config.vae, MODELS).cuda()
# build text encoder
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
text_encoder.t5.model = text_encoder.t5.model.cuda()
# build stdit
# we load model from HuggingFace directly so that we don't need to
# handle model download logic in HuggingFace Space
from transformers import AutoModel
stdit = AutoModel.from_pretrained(
HF_STDIT_MAP[model_type],
enable_flash_attn=enable_optimization,
trust_remote_code=True,
).cuda()
# build scheduler
from opensora.registry import SCHEDULERS
scheduler = build_module(config.scheduler, SCHEDULERS)
# hack for classifier-free guidance
text_encoder.y_embedder = stdit.y_embedder
# move modelst to device
vae = vae.to(torch.bfloat16).eval()
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
stdit = stdit.to(torch.bfloat16).eval()
# clear cuda
torch.cuda.empty_cache()
return vae, text_encoder, stdit, scheduler
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-type",
default="v1.1-stage3",
choices=MODEL_TYPES,
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
)
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
parser.add_argument(
"--enable-optimization",
action="store_true",
help="Whether to enable optimization such as flash attention and fused layernorm",
)
return parser.parse_args()
# ============================
# Main Gradio Script
# ============================
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
# so we can't pass the models to `run_inference` as arguments.
# instead, we need to define them globally so that we can access these models inside `run_inference`
# read config
args = parse_args()
config = read_config(CONFIG_MAP[args.model_type])
# make outputs dir
os.makedirs(args.output, exist_ok=True)
# disable torch jit as it can cause failure in gradio SDK
# gradio sdk uses torch with cuda 11.3
torch.jit._state.disable()
# set up
install_dependencies(enable_optimization=args.enable_optimization)
# import after installation
from opensora.datasets import IMG_FPS, save_sample
from opensora.utils.misc import to_torch_dtype
# some global variables
dtype = to_torch_dtype(config.dtype)
device = torch.device("cuda")
# build model
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config, enable_optimization=args.enable_optimization)
@spaces.GPU(duration=200)
def run_inference(mode, prompt_text, resolution, length, reference_image):
with torch.inference_mode():
# ======================
# 1. Preparation
# ======================
# parse the inputs
resolution = RESOLUTION_MAP[resolution]
# compute number of loops
num_seconds = int(length.rstrip('s'))
total_number_of_frames = num_seconds * config.fps / config.frame_interval
num_loop = math.ceil(total_number_of_frames / config.num_frames)
# prepare model args
model_args = dict()
height = torch.tensor([resolution[0]], device=device, dtype=dtype)
width = torch.tensor([resolution[1]], device=device, dtype=dtype)
num_frames = torch.tensor([config.num_frames], device=device, dtype=dtype)
ar = torch.tensor([resolution[0] / resolution[1]], device=device, dtype=dtype)
if config.num_frames == 1:
config.fps = IMG_FPS
fps = torch.tensor([config.fps], device=device, dtype=dtype)
model_args["height"] = height
model_args["width"] = width
model_args["num_frames"] = num_frames
model_args["ar"] = ar
model_args["fps"] = fps
# compute latent size
input_size = (config.num_frames, *resolution)
latent_size = vae.get_latent_size(input_size)
# process prompt
prompt_raw = [prompt_text]
prompt_raw, _ = extract_json_from_prompts(prompt_raw)
prompt_loops = process_prompts(prompt_raw, num_loop)
video_clips = []
# prepare mask strategy
if mode == "Text2Video":
mask_strategy = [None]
elif mode == "Image2Video":
mask_strategy = ['0']
else:
raise ValueError(f"Invalid mode: {mode}")
# =========================
# 2. Load reference images
# =========================
if mode == "Text2Video":
refs_x = collect_references_batch([None], vae, resolution)
elif mode == "Image2Video":
# save image to disk
from PIL import Image
im = Image.fromarray(reference_image)
im.save("test.jpg")
refs_x = collect_references_batch(["test.jpg"], vae, resolution)
else:
raise ValueError(f"Invalid mode: {mode}")
# 4.3. long video generation
for loop_i in range(num_loop):
# 4.4 sample in hidden space
batch_prompts = [prompt[loop_i] for prompt in prompt_loops]
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
# 4.5. apply mask strategy
masks = None
# if cfg.reference_path is not None:
if loop_i > 0:
ref_x = vae.encode(video_clips[-1])
for j, refs in enumerate(refs_x):
if refs is None:
refs_x[j] = [ref_x[j]]
else:
refs.append(ref_x[j])
if mask_strategy[j] is None:
mask_strategy[j] = ""
else:
mask_strategy[j] += ";"
mask_strategy[
j
] += f"{loop_i},{len(refs)-1},-{config.condition_frame_length},0,{config.condition_frame_length}"
masks = apply_mask_strategy(z, refs_x, mask_strategy, loop_i)
# 4.6. diffusion sampling
samples = scheduler.sample(
stdit,
text_encoder,
z=z,
prompts=batch_prompts,
device=device,
additional_args=model_args,
mask=masks, # scheduler must support mask
)
samples = vae.decode(samples.to(dtype))
video_clips.append(samples)
# 4.7. save video
if loop_i == num_loop - 1:
video_clips_list = [
video_clips[0][0]] + [video_clips[i][0][:, config.condition_frame_length :]
for i in range(1, num_loop)
]
video = torch.cat(video_clips_list, dim=1)
save_path = f"{args.output}/sample"
saved_path = save_sample(video, fps=config.fps // config.frame_interval, save_path=save_path, force_video=True)
return saved_path
def main():
# create demo
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div style='text-align: center;'>
<p align="center">
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
</p>
<div style="display: flex; gap: 10px; justify-content: center;">
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a>
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a>
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a>
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a>
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a>
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
</div>
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
</div>
"""
)
with gr.Row():
with gr.Column():
mode = gr.Radio(
choices=["Text2Video", "Image2Video"],
value="Text2Video",
label="Usage",
info="Choose your usage scenario",
)
prompt_text = gr.Textbox(
label="Prompt",
placeholder="Describe your video here",
lines=4,
)
resolution = gr.Radio(
choices=["144p", "240p", "360p", "480p", "720p", "1080p"],
value="144p",
label="Resolution",
)
length = gr.Radio(
choices=["2s", "4s", "8s"],
value="2s",
label="Video Length",
info="8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time."
)
reference_image = gr.Image(
label="Reference Image (only used for Image2Video)",
)
with gr.Column():
output_video = gr.Video(
label="Output Video",
height="100%"
)
with gr.Row():
submit_button = gr.Button("Generate video")
submit_button.click(
fn=run_inference,
inputs=[mode, prompt_text, resolution, length, reference_image],
outputs=output_video
)
# launch
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
if __name__ == "__main__":
main()
|