AhmedSSabir
commited on
Commit
•
59c43da
1
Parent(s):
0c726aa
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,17 @@ import re
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
import requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
from sentence_transformers import SentenceTransformer, util
|
12 |
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
|
@@ -47,16 +58,16 @@ import re
|
|
47 |
|
48 |
|
49 |
|
50 |
-
def Sort_Tuple(tup):
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
|
57 |
-
def softmax(x):
|
58 |
-
|
59 |
-
|
60 |
|
61 |
|
62 |
def get_sim(x):
|
@@ -68,7 +79,7 @@ def get_sim(x):
|
|
68 |
# Load pre-trained model
|
69 |
|
70 |
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
|
71 |
-
model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
|
72 |
#model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
|
73 |
|
74 |
#model.eval()
|
@@ -90,46 +101,77 @@ tokenizer = GPT2TokenizerFast.from_pretrained(model_name)
|
|
90 |
|
91 |
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
def cloze_prob(text):
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
|
134 |
|
135 |
|
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
import requests
|
10 |
+
from doctest import OutputChecker
|
11 |
+
import sys
|
12 |
+
import torch
|
13 |
+
import re
|
14 |
+
import os
|
15 |
+
import gradio as gr
|
16 |
+
import requests
|
17 |
+
import torch
|
18 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
19 |
+
from torch.nn.functional import softmax
|
20 |
+
import numpy as np
|
21 |
|
22 |
from sentence_transformers import SentenceTransformer, util
|
23 |
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
|
|
|
58 |
|
59 |
|
60 |
|
61 |
+
# def Sort_Tuple(tup):
|
62 |
|
63 |
+
# # (Sorts in descending order)
|
64 |
+
# tup.sort(key = lambda x: x[1])
|
65 |
+
# return tup[::-1]
|
66 |
|
67 |
|
68 |
+
# def softmax(x):
|
69 |
+
# exps = np.exp(x)
|
70 |
+
# return np.divide(exps, np.sum(exps))
|
71 |
|
72 |
|
73 |
def get_sim(x):
|
|
|
79 |
# Load pre-trained model
|
80 |
|
81 |
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
|
82 |
+
#model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
|
83 |
#model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
|
84 |
|
85 |
#model.eval()
|
|
|
101 |
|
102 |
|
103 |
|
104 |
+
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
105 |
+
# model = GPT2LMHeadModel.from_pretrained('gpt2')
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def sentence_prob_mean(text):
|
110 |
+
# Tokenize the input text and add special tokens
|
111 |
+
input_ids = tokenizer.encode(text, return_tensors='pt')
|
112 |
+
|
113 |
+
# Obtain model outputs
|
114 |
+
with torch.no_grad():
|
115 |
+
outputs = model(input_ids, labels=input_ids)
|
116 |
+
logits = outputs.logits # logits are the model outputs before applying softmax
|
117 |
+
|
118 |
+
# Shift logits and labels so that tokens are aligned:
|
119 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
120 |
+
shift_labels = input_ids[..., 1:].contiguous()
|
121 |
+
|
122 |
+
# Calculate the softmax probabilities
|
123 |
+
probs = softmax(shift_logits, dim=-1)
|
124 |
+
|
125 |
+
# Gather the probabilities of the actual token IDs
|
126 |
+
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)
|
127 |
+
|
128 |
+
# Compute the mean probability across the tokens
|
129 |
+
mean_prob = torch.mean(gathered_probs).item()
|
130 |
+
|
131 |
+
return mean_prob
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
|
136 |
+
# def cloze_prob(text):
|
137 |
|
138 |
+
# whole_text_encoding = tokenizer.encode(text)
|
139 |
+
# # Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
|
140 |
+
# text_list = text.split()
|
141 |
+
# stem = ' '.join(text_list[:-1])
|
142 |
+
# stem_encoding = tokenizer.encode(stem)
|
143 |
+
# # cw_encoding is just the difference between whole_text_encoding and stem_encoding
|
144 |
+
# # note: this might not correspond exactly to the word itself
|
145 |
+
# cw_encoding = whole_text_encoding[len(stem_encoding):]
|
146 |
+
# # Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
|
147 |
+
# # Put the whole text encoding into a tensor, and get the model's comprehensive output
|
148 |
+
# tokens_tensor = torch.tensor([whole_text_encoding])
|
149 |
|
150 |
+
# with torch.no_grad():
|
151 |
+
# outputs = model(tokens_tensor)
|
152 |
+
# predictions = outputs[0]
|
153 |
+
|
154 |
+
# logprobs = []
|
155 |
+
# # start at the stem and get downstream probabilities incrementally from the model(see above)
|
156 |
+
# start = -1-len(cw_encoding)
|
157 |
+
# for j in range(start,-1,1):
|
158 |
+
# raw_output = []
|
159 |
+
# for i in predictions[-1][j]:
|
160 |
+
# raw_output.append(i.item())
|
161 |
|
162 |
+
# logprobs.append(np.log(softmax(raw_output)))
|
163 |
|
164 |
+
# # if the critical word is three tokens long, the raw_probabilities should look something like this:
|
165 |
+
# # [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
|
166 |
+
# # Then for the i'th token we want to find its associated probability
|
167 |
+
# # this is just: raw_probabilities[i][token_index]
|
168 |
+
# conditional_probs = []
|
169 |
+
# for cw,prob in zip(cw_encoding,logprobs):
|
170 |
+
# conditional_probs.append(prob[cw])
|
171 |
+
# # now that you have all the relevant probabilities, return their product.
|
172 |
+
# # This is the probability of the critical word given the context before it.
|
173 |
+
|
174 |
+
# return np.exp(np.sum(conditional_probs))
|
175 |
|
176 |
|
177 |
|