#!/usr/bin/env python3 from doctest import OutputChecker import sys #import torch import re import os import gradio as gr import requests from sentence_transformers import SentenceTransformer, util #url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" #resp = requests.get(url) from transformers import GPT2Tokenizer, GPT2LMHeadModel from transformers import T5Tokenizer, AutoModelForCausalLM from arabert import ArabertPreprocessor from arabert.aragpt2.grover.modeling_gpt2 import GPT2LMHeadModel from transformers import AutoTokenizer, AutoModel from arabert.preprocess import ArabertPreprocessor from sentence_transformers import SentenceTransformer, util #from sentence_transformers import SentenceTransformer, util #from sklearn.metrics.pairwise import cosine_similarity #from lm_scorer.models.auto import AutoLMScorer as LMScorer #from sentence_transformers import SentenceTransformer, util #from sklearn.metrics.pairwise import cosine_similarity #model_sts = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base') #model_sts = SentenceTransformer('stsb-distilbert-base') #model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') model_sts = SentenceTransformer('distiluse-base-multilingual-cased-v1') #batch_size = 1 #scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) #import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def Sort_Tuple(tup): # (Sorts in descending order) tup.sort(key = lambda x: x[1]) return tup[::-1] def softmax(x): exps = np.exp(x) return np.divide(exps, np.sum(exps)) def get_sim(x): x = str(x)[1:-1] x = str(x)[1:-1] return x # Load pre-trained model #model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True) model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True) #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True) #model.eval() #tokenizer = gr.Interface.load('huggingface/distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') model_name = "aubmindlab/aragpt2-base" arabert_prep = ArabertPreprocessor(model_name=model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) model = GPT2LMHeadModel.from_pretrained(model_name, output_hidden_states=True, output_attentions=True) tokenizer = GPT2TokenizerFast.from_pretrained(model_name) #model.eval() def cloze_prob(text): whole_text_encoding = tokenizer.encode(text) # Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word) text_list = text.split() stem = ' '.join(text_list[:-1]) stem_encoding = tokenizer.encode(stem) # cw_encoding is just the difference between whole_text_encoding and stem_encoding # note: this might not correspond exactly to the word itself cw_encoding = whole_text_encoding[len(stem_encoding):] # Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem. # Put the whole text encoding into a tensor, and get the model's comprehensive output tokens_tensor = torch.tensor([whole_text_encoding]) with torch.no_grad(): outputs = model(tokens_tensor) predictions = outputs[0] logprobs = [] # start at the stem and get downstream probabilities incrementally from the model(see above) start = -1-len(cw_encoding) for j in range(start,-1,1): raw_output = [] for i in predictions[-1][j]: raw_output.append(i.item()) logprobs.append(np.log(softmax(raw_output))) # if the critical word is three tokens long, the raw_probabilities should look something like this: # [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]] # Then for the i'th token we want to find its associated probability # this is just: raw_probabilities[i][token_index] conditional_probs = [] for cw,prob in zip(cw_encoding,logprobs): conditional_probs.append(prob[cw]) # now that you have all the relevant probabilities, return their product. # This is the probability of the critical word given the context before it. return np.exp(np.sum(conditional_probs)) def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) #def Visual_re_ranker(caption, visual_context_label, visual_context_prob): def Visual_re_ranker(caption_man, caption_woman, visual_context_label, visual_context_prob): caption_man = caption_man caption_woman = caption_woman visual_context_label= visual_context_label visual_context_prob = visual_context_prob caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True) caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True) visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True) sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, visual_context_label_emb) sim_m = sim_m.cpu().numpy() sim_m = get_sim(sim_m) sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, visual_context_label_emb) sim_w = sim_w.cpu().numpy() sim_w = get_sim(sim_w) LM_man = cloze_prob(caption_man) LM_woman = cloze_prob(caption_woman) #LM = scorer.sentence_score(caption, reduce="mean") score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(visual_context_prob))) score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(visual_context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"Man": float(score_man)/1, "Woman": float(score_woman)/1} #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender", #inputs=[gr.Textbox(value="a man sitting on a surfboard in the ocean") , gr.Textbox(value="a woman sitting on a surfboard in the ocean"), gr.Textbox(value="paddle"), gr.Textbox(value="0.5283")], inputs=[gr.Textbox(value="شعرها جميل اليوم") , gr.Textbox(value="شعره جميل اليوم"), gr.Textbox(value="جميل"), gr.Textbox(value="0.7385")], outputs="label", ) demo.launch()