File size: 7,706 Bytes
c2e8ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b61e93
 
 
 
 
 
 
3e97a0d
5b61e93
 
c2e8ec7
 
 
5b61e93
c2e8ec7
 
 
 
5b61e93
 
 
 
c2e8ec7
 
 
 
 
52ee4c6
c2e8ec7
 
 
 
 
 
 
 
 
b8bfd60
 
e81aa28
 
c2e8ec7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import argparse
#import torch
import re
import os
import gradio as gr
import requests
from sentence_transformers import SentenceTransformer, util
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from transformers import T5Tokenizer, AutoModelForCausalLM
import torch 

from transformers import BertJapaneseTokenizer, BertModel
import torch


class SentenceBertJapanese:
    def __init__(self, model_name_or_path, device=None):
        self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
        self.model = BertModel.from_pretrained(model_name_or_path)
        self.model.eval()

        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = torch.device(device)
        self.model.to(device)

    def _mean_pooling(self, model_output, attention_mask):
        token_embeddings = model_output[0] #First element of model_output contains all token embeddings
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


    def encode(self, sentences, batch_size=8):
        all_embeddings = []
        iterator = range(0, len(sentences), batch_size)
        for batch_idx in iterator:
            batch = sentences[batch_idx:batch_idx + batch_size]

            encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", 
                                           truncation=True, return_tensors="pt").to(self.device)
            model_output = self.model(**encoded_input)
            sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')

            all_embeddings.extend(sentence_embeddings)

        # return torch.stack(all_embeddings).numpy()
        return torch.stack(all_embeddings)


#model_sbert = SentenceTransformer('stsb-distilbert-base')
    
model_sbert = SentenceTransformer("colorfulscoop/sbert-base-ja")
#MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens-v2"



#model_sbert = SentenceBertJapanese(MODEL_NAME)


#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)

#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
import re

def Sort_Tuple(tup):  
  
	# (Sorts in descending order)  
	tup.sort(key = lambda x: x[1])  
	return tup[::-1]


def softmax(x):
	exps = np.exp(x)
	return np.divide(exps, np.sum(exps))
	
# Load pre-trained model 

#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
#model = GPT2LMHeadModel.from_pretrained('colorfulscoop/gpt2-small-ja',output_hidden_states= True, output_attentions=True)

tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt-1b")
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-1b")

#model  =  gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)

#model.eval()
#tokenizer =  gr.Interface.load('huggingface/distilgpt2')

#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
#tokenizer = T5Tokenizer.from_pretrained('colorfulscoop/gpt2-small-ja')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')


def cloze_prob(text):

	whole_text_encoding = tokenizer.encode(text)
	# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
	text_list = text.split()
	stem = ' '.join(text_list[:-1])
	stem_encoding = tokenizer.encode(stem)
	# cw_encoding is just the difference between whole_text_encoding and stem_encoding
	# note: this might not correspond exactly to the word itself
	cw_encoding = whole_text_encoding[len(stem_encoding):]
	# Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
	# Put the whole text encoding into a tensor, and get the model's comprehensive output
	tokens_tensor = torch.tensor([whole_text_encoding])
	
	with torch.no_grad():
		outputs = model(tokens_tensor)
		predictions = outputs[0]   

	logprobs = []
	# start at the stem and get downstream probabilities incrementally from the model(see above)
	start = -1-len(cw_encoding)
	for j in range(start,-1,1):
			raw_output = []
			for i in predictions[-1][j]:
					raw_output.append(i.item())
	
			logprobs.append(np.log(softmax(raw_output)))
			
	# if the critical word is three tokens long, the raw_probabilities should look something like this:
	# [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
	# Then for the i'th token we want to find its associated probability
	# this is just: raw_probabilities[i][token_index]
	conditional_probs = []
	for cw,prob in zip(cw_encoding,logprobs):
			conditional_probs.append(prob[cw])
	# now that you have all the relevant probabilities, return their product.
	# This is the probability of the critical word given the context before it.

	return np.exp(np.sum(conditional_probs))





def cos_sim(a, b):
    return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))

def get_sim(x):
    x =  str(x)[1:-1]
    x =  str(x)[1:-1]
    return x



  
#def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
def Visual_re_ranker(sentence_man, sentence_woman, context_label, context_prob):
    sentence_man = sentence_man  
    sentence_woman = sentence_woman
    context_label= context_label
    context_prob = context_prob
    sentence_emb_man = model_sbert.encode(sentence_man, convert_to_tensor=True)
    sentence_emb_woman = model_sbert.encode(sentence_woman, convert_to_tensor=True)
    context_label_emb = model_sbert.encode(context_label, convert_to_tensor=True)

    sim_m =  cosine_scores = util.pytorch_cos_sim(sentence_emb_man, context_label_emb)
    sim_m = sim_m.cpu().numpy()
    sim_m = get_sim(sim_m)

    sim_w = cosine_scores = util.pytorch_cos_sim(sentence_emb_woman, context_label_emb) 
    sim_w = sim_w.cpu().numpy()
    sim_w = get_sim(sim_w)


    LM_man = cloze_prob(sentence_man)
    LM_woman = cloze_prob(sentence_woman)
    score_man     = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
    score_woman   = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))





    return {"彼 (man)": float(score_man * 100000000), "彼女 (woman)": float(score_woman)* 1000000000}



#print(Visual_re_ranker("ハイデルベルク大学は彼の出身大学である。", "大学", "0.7458009"))


demo = gr.Interface(
    fn=Visual_re_ranker,
    description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender",
    inputs=[gr.Textbox(value="ハイデルベルク大学は彼の出身大学である。") , gr.Textbox(value="ハイデルベルク大学は彼女の出身大学である。"), gr.Textbox(value="大学"),  gr.Textbox(value="0.7458009")],
    # inputs=[gr.Textbox(value="これこれ!!なっちょのインスタ開設はこれがあるから尚幸せなのよ!") , gr.Textbox(value="インスタ開設"), gr.Textbox(value="大学"),  gr.Textbox(value="0.5239")],
    
    
    #inputs=[gr.Textbox(value="a man is blow drying his hair in the bathroom") , gr.Textbox(value="a woman is blow drying her hair in the bathroom"), gr.Textbox(value="hair spray"),  gr.Textbox(value="0.7385")],
    #outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"),  gr.Textbox(value="Belief revision score via visual context")],
    outputs="label",
)
demo.launch()