File size: 7,706 Bytes
c2e8ec7 5b61e93 3e97a0d 5b61e93 c2e8ec7 5b61e93 c2e8ec7 5b61e93 c2e8ec7 52ee4c6 c2e8ec7 b8bfd60 e81aa28 c2e8ec7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import argparse
#import torch
import re
import os
import gradio as gr
import requests
from sentence_transformers import SentenceTransformer, util
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
from transformers import T5Tokenizer, AutoModelForCausalLM
import torch
from transformers import BertJapaneseTokenizer, BertModel
import torch
class SentenceBertJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
self.model = BertModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
# return torch.stack(all_embeddings).numpy()
return torch.stack(all_embeddings)
#model_sbert = SentenceTransformer('stsb-distilbert-base')
model_sbert = SentenceTransformer("colorfulscoop/sbert-base-ja")
#MODEL_NAME = "sonoisa/sentence-bert-base-ja-mean-tokens-v2"
#model_sbert = SentenceBertJapanese(MODEL_NAME)
#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
import re
def Sort_Tuple(tup):
# (Sorts in descending order)
tup.sort(key = lambda x: x[1])
return tup[::-1]
def softmax(x):
exps = np.exp(x)
return np.divide(exps, np.sum(exps))
# Load pre-trained model
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
#model = GPT2LMHeadModel.from_pretrained('colorfulscoop/gpt2-small-ja',output_hidden_states= True, output_attentions=True)
tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-gpt-1b")
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-1b")
#model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
#model.eval()
#tokenizer = gr.Interface.load('huggingface/distilgpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
#tokenizer = T5Tokenizer.from_pretrained('colorfulscoop/gpt2-small-ja')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
def cloze_prob(text):
whole_text_encoding = tokenizer.encode(text)
# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
text_list = text.split()
stem = ' '.join(text_list[:-1])
stem_encoding = tokenizer.encode(stem)
# cw_encoding is just the difference between whole_text_encoding and stem_encoding
# note: this might not correspond exactly to the word itself
cw_encoding = whole_text_encoding[len(stem_encoding):]
# Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
# Put the whole text encoding into a tensor, and get the model's comprehensive output
tokens_tensor = torch.tensor([whole_text_encoding])
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
logprobs = []
# start at the stem and get downstream probabilities incrementally from the model(see above)
start = -1-len(cw_encoding)
for j in range(start,-1,1):
raw_output = []
for i in predictions[-1][j]:
raw_output.append(i.item())
logprobs.append(np.log(softmax(raw_output)))
# if the critical word is three tokens long, the raw_probabilities should look something like this:
# [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
# Then for the i'th token we want to find its associated probability
# this is just: raw_probabilities[i][token_index]
conditional_probs = []
for cw,prob in zip(cw_encoding,logprobs):
conditional_probs.append(prob[cw])
# now that you have all the relevant probabilities, return their product.
# This is the probability of the critical word given the context before it.
return np.exp(np.sum(conditional_probs))
def cos_sim(a, b):
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))
def get_sim(x):
x = str(x)[1:-1]
x = str(x)[1:-1]
return x
#def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
def Visual_re_ranker(sentence_man, sentence_woman, context_label, context_prob):
sentence_man = sentence_man
sentence_woman = sentence_woman
context_label= context_label
context_prob = context_prob
sentence_emb_man = model_sbert.encode(sentence_man, convert_to_tensor=True)
sentence_emb_woman = model_sbert.encode(sentence_woman, convert_to_tensor=True)
context_label_emb = model_sbert.encode(context_label, convert_to_tensor=True)
sim_m = cosine_scores = util.pytorch_cos_sim(sentence_emb_man, context_label_emb)
sim_m = sim_m.cpu().numpy()
sim_m = get_sim(sim_m)
sim_w = cosine_scores = util.pytorch_cos_sim(sentence_emb_woman, context_label_emb)
sim_w = sim_w.cpu().numpy()
sim_w = get_sim(sim_w)
LM_man = cloze_prob(sentence_man)
LM_woman = cloze_prob(sentence_woman)
score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))
return {"彼 (man)": float(score_man * 100000000), "彼女 (woman)": float(score_woman)* 1000000000}
#print(Visual_re_ranker("ハイデルベルク大学は彼の出身大学である。", "大学", "0.7458009"))
demo = gr.Interface(
fn=Visual_re_ranker,
description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender",
inputs=[gr.Textbox(value="ハイデルベルク大学は彼の出身大学である。") , gr.Textbox(value="ハイデルベルク大学は彼女の出身大学である。"), gr.Textbox(value="大学"), gr.Textbox(value="0.7458009")],
# inputs=[gr.Textbox(value="これこれ!!なっちょのインスタ開設はこれがあるから尚幸せなのよ!") , gr.Textbox(value="インスタ開設"), gr.Textbox(value="大学"), gr.Textbox(value="0.5239")],
#inputs=[gr.Textbox(value="a man is blow drying his hair in the bathroom") , gr.Textbox(value="a woman is blow drying her hair in the bathroom"), gr.Textbox(value="hair spray"), gr.Textbox(value="0.7385")],
#outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")],
outputs="label",
)
demo.launch()
|