File size: 5,127 Bytes
f38b41e
 
 
 
 
 
 
 
 
e844435
 
f38b41e
 
 
 
 
4e74afc
 
f38b41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cd94a
 
f38b41e
 
 
 
 
18cd94a
f6e09cf
f38b41e
 
 
78464e7
f6e09cf
 
78464e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d03f9
 
 
 
 
 
 
 
f38b41e
c6d03f9
 
 
 
 
 
 
 
 
 
f38b41e
c6d03f9
f38b41e
5ea9bf1
c6d03f9
 
 
e844435
f38b41e
c6d03f9
f38b41e
 
 
 
 
 
 
 
 
0aa8ed6
 
 
f38b41e
 
0aa8ed6
 
f38b41e
 
0aa8ed6
f38b41e
0aa8ed6
f38b41e
 
 
0aa8ed6
f38b41e
 
 
 
02397eb
 
78464e7
02397eb
 
78464e7
db30631
78464e7
f38b41e
0aa8ed6
 
f38b41e
 
 
 
 
 
 
 
 
 
0aa8ed6
f38b41e
 
c505acd
959c369
 
e844435
a571a7b
f38b41e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import torch
import re
import os
import gradio as gr
import requests

# just for the sake of this demo, we use cloze prob to initialize the hypothesis 

#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
#resp = requests.get(url)

from sentence_transformers import SentenceTransformer, util

#model_sts = SentenceTransformer('stsb-distilbert-base')
model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens')
#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)

#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import numpy as np
import re




def Sort_Tuple(tup):  
  
	# (Sorts in descending order)  
	tup.sort(key = lambda x: x[1])  
	return tup[::-1]


def softmax(x):
	exps = np.exp(x)
	return np.divide(exps, np.sum(exps))


def get_sim(x):
    x =  str(x)[1:-1]
    x =  str(x)[1:-1]
    return x
 
	
# Load pre-trained model 

#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True)
#model  =  gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)

#model.eval()
#tokenizer =  gr.Interface.load('huggingface/distilgpt2')

#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')



tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
model = GPT2LMHeadModel.from_pretrained('distilgpt2')

def sentence_prob_mean(text):
    # Tokenize the input text and add special tokens
    input_ids = tokenizer.encode(text, return_tensors='pt')

    # Obtain model outputs
    with torch.no_grad():
        outputs = model(input_ids, labels=input_ids)
        logits = outputs.logits  # logits are the model outputs before applying softmax

    # Shift logits and labels so that tokens are aligned:
    shift_logits = logits[..., :-1, :].contiguous()
    shift_labels = input_ids[..., 1:].contiguous()

    # Calculate the softmax probabilities
    probs = softmax(shift_logits, dim=-1)

    # Gather the probabilities of the actual token IDs
    gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1)

    # Compute the mean probability across the tokens
    mean_prob = torch.mean(gathered_probs).item()



def cloze_prob(text):

	whole_text_encoding = tokenizer.encode(text)
	text_list = text.split()
	stem = ' '.join(text_list[:-1])
	stem_encoding = tokenizer.encode(stem)
	cw_encoding = whole_text_encoding[len(stem_encoding):]
	tokens_tensor = torch.tensor([whole_text_encoding])
	
	with torch.no_grad():
		outputs = model(tokens_tensor)
		predictions = outputs[0]   

	logprobs = []
	start = -1-len(cw_encoding)
	for j in range(start,-1,1):
			raw_output = []
			for i in predictions[-1][j]:
					raw_output.append(i.item())
	
			logprobs.append(np.log(softmax(raw_output)))
			
	
	conditional_probs = []
	for cw,prob in zip(cw_encoding,logprobs):
			conditional_probs.append(prob[cw])


	return np.exp(np.sum(conditional_probs))





def cos_sim(a, b):
    return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))




def Visual_re_ranker(caption_man, caption_woman, context_label, context_prob):
    caption_man = caption_man  
    caption_woman = caption_woman
    context_label= context_label
    context_prob = context_prob
    caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True)
    caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True)
    context_label_emb = model_sts.encode(context_label, convert_to_tensor=True)

    sim_m =  cosine_scores = util.pytorch_cos_sim(caption_emb_man, context_label_emb)
    sim_m = sim_m.cpu().numpy()
    sim_m = get_sim(sim_m)

    sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, context_label_emb) 
    sim_w = sim_w.cpu().numpy()
    sim_w = get_sim(sim_w)


    LM_man =  sentence_prob_mean(caption_man)
    LM_woman = sentence_prob_mean(caption_woman)

    #LM_man = cloze_prob(caption_man)
    #LM_woman = cloze_prob(caption_woman)

 
    
    #LM  = scorer.sentence_score(caption, reduce="mean")
    score_man     = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob)))
    score_woman   = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob)))


    #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
    return {"Man": float(score_man)/1, "Woman": float(score_woman)/1}
    #return LM, sim, score 






demo = gr.Interface(
    fn=Visual_re_ranker,
    description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender (distilbert)",
    inputs=[gr.Textbox(value="a man riding a motorcycle on a road") , gr.Textbox(value="a woman riding a motorcycle on a road"), gr.Textbox(value="motor scooter"),  gr.Textbox(value="0.2183")],
  
  
   
    outputs="label",
)
demo.launch()