#!/usr/bin/env python3 from doctest import OutputChecker import sys import torch import re import os import gradio as gr import requests # just for the sake of this demo, we use cloze prob to initialize the hypothesis #url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" #resp = requests.get(url) from sentence_transformers import SentenceTransformer, util #model_sts = SentenceTransformer('stsb-distilbert-base') model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') #batch_size = 1 #scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) #import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def Sort_Tuple(tup): # (Sorts in descending order) tup.sort(key = lambda x: x[1]) return tup[::-1] def softmax(x): exps = np.exp(x) return np.divide(exps, np.sum(exps)) def get_sim(x): x = str(x)[1:-1] x = str(x)[1:-1] return x # Load pre-trained model #model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True) #model = GPT2LMHeadModel.from_pretrained('gpt2', output_hidden_states = True, output_attentions = True) #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True) #model.eval() #tokenizer = gr.Interface.load('huggingface/distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') def sentence_prob_mean(text): # Tokenize the input text and add special tokens input_ids = tokenizer.encode(text, return_tensors='pt') # Obtain model outputs with torch.no_grad(): outputs = model(input_ids, labels=input_ids) logits = outputs.logits # logits are the model outputs before applying softmax # Shift logits and labels so that tokens are aligned: shift_logits = logits[..., :-1, :].contiguous() shift_labels = input_ids[..., 1:].contiguous() # Calculate the softmax probabilities probs = softmax(shift_logits, dim=-1) # Gather the probabilities of the actual token IDs gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1) # Compute the mean probability across the tokens mean_prob = torch.mean(gathered_probs).item() return mean_prob # def cloze_prob(text): # whole_text_encoding = tokenizer.encode(text) # text_list = text.split() # stem = ' '.join(text_list[:-1]) # stem_encoding = tokenizer.encode(stem) # cw_encoding = whole_text_encoding[len(stem_encoding):] # tokens_tensor = torch.tensor([whole_text_encoding]) # with torch.no_grad(): # outputs = model(tokens_tensor) # predictions = outputs[0] # logprobs = [] # start = -1-len(cw_encoding) # for j in range(start,-1,1): # raw_output = [] # for i in predictions[-1][j]: # raw_output.append(i.item()) # logprobs.append(np.log(softmax(raw_output))) # conditional_probs = [] # for cw,prob in zip(cw_encoding,logprobs): # conditional_probs.append(prob[cw]) # return np.exp(np.sum(conditional_probs)) def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) def Visual_re_ranker(caption_man, caption_woman, context_label, context_prob): caption_man = caption_man caption_woman = caption_woman context_label= context_label context_prob = context_prob caption_emb_man = model_sts.encode(caption_man, convert_to_tensor=True) caption_emb_woman = model_sts.encode(caption_woman, convert_to_tensor=True) context_label_emb = model_sts.encode(context_label, convert_to_tensor=True) sim_m = cosine_scores = util.pytorch_cos_sim(caption_emb_man, context_label_emb) sim_m = sim_m.cpu().numpy() sim_m = get_sim(sim_m) sim_w = cosine_scores = util.pytorch_cos_sim(caption_emb_woman, context_label_emb) sim_w = sim_w.cpu().numpy() sim_w = get_sim(sim_w) LM_man = sentence_prob_mean(caption_man) LM_woman = sentence_prob_mean(caption_woman) #LM_man = cloze_prob(caption_man) #LM_woman = cloze_prob(caption_woman) #LM = scorer.sentence_score(caption, reduce="mean") score_man = pow(float(LM_man),pow((1-float(sim_m))/(1+ float(sim_m)),1-float(context_prob))) score_woman = pow(float(LM_woman),pow((1-float(sim_w))/(1+ float(sim_w)),1-float(context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"Man": float(score_man)/1, "Woman": float(score_woman)/1} #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, description="Demo for Women Wearing Lipstick: Measuring the Bias Between Object and Its Related Gender (distilbert)", inputs=[gr.Textbox(value="a man riding a motorcycle on a road") , gr.Textbox(value="a woman riding a motorcycle on a road"), gr.Textbox(value="motor scooter"), gr.Textbox(value="0.2183")], outputs="label", ) demo.launch()