File size: 4,823 Bytes
7fd5c24 4e75e3a 7fd5c24 dff4bb8 37b9ac3 dff4bb8 769eaed 37b9ac3 769eaed 37b9ac3 7fd5c24 55e5d9c ff9bf03 5ac0349 37b9ac3 a600014 37b9ac3 55e5d9c ff9bf03 55e5d9c 37b9ac3 ff9bf03 55e5d9c 37b9ac3 7fd5c24 55e5d9c 7fd5c24 37b9ac3 7fd5c24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import argparse
#import torch
import re
import os
import gradio as gr
import requests
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
#resp = requests.get(url)
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#from lm_scorer.models.auto import AutoLMScorer as LMScorer
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
model_1 = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base')
#SentenceTransformer('stsb-distilbert-base', device=device)
#batch_size = 1
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
#import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
import NumPy as np
import re
def Sort_Tuple(tup):
# (Sorts in descending order)
tup.sort(key = lambda x: x[1])
return tup[::-1]
def softmax(x):
exps = np.exp(x)
return np.divide(exps, np.sum(exps))
# Load pre-trained model
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True)
model.eval()
tokenizer = gr.Interface.load('huggingface/distilgpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
def cloze_prob(text):
whole_text_encoding = tokenizer.encode(text)
# Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word)
text_list = text.split()
stem = ' '.join(text_list[:-1])
stem_encoding = tokenizer.encode(stem)
# cw_encoding is just the difference between whole_text_encoding and stem_encoding
# note: this might not correspond exactly to the word itself
cw_encoding = whole_text_encoding[len(stem_encoding):]
# Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem.
# Put the whole text encoding into a tensor, and get the model's comprehensive output
tokens_tensor = torch.tensor([whole_text_encoding])
with torch.no_grad():
outputs = model(tokens_tensor)
predictions = outputs[0]
logprobs = []
# start at the stem and get downstream probabilities incrementally from the model(see above)
start = -1-len(cw_encoding)
for j in range(start,-1,1):
raw_output = []
for i in predictions[-1][j]:
raw_output.append(i.item())
logprobs.append(np.log(softmax(raw_output)))
# if the critical word is three tokens long, the raw_probabilities should look something like this:
# [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]]
# Then for the i'th token we want to find its associated probability
# this is just: raw_probabilities[i][token_index]
conditional_probs = []
for cw,prob in zip(cw_encoding,logprobs):
conditional_probs.append(prob[cw])
# now that you have all the relevant probabilities, return their product.
# This is the probability of the critical word given the context before it.
return np.exp(np.sum(conditional_probs))
def cos_sim(a, b):
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))
def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
caption = caption
visual_context_label= visual_context_label
visual_context_prob = visual_context_prob
caption_emb = model.encode(caption, convert_to_tensor=True)
visual_context_label_emb = model_1.encode(visual_context_label, convert_to_tensor=True)
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb)
sim = sim.cpu().numpy()
sim = str(sim)[1:-1]
sim = str(sim)[1:-1]
LM = cloze_prob(caption)
#LM = scorer.sentence_score(caption, reduce="mean")
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob)))
#return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 }
#return LM, sim, score
demo = gr.Interface(
fn=Visual_re_ranker,
description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information",
inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")],
#outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")],
outputs="label",
)
demo.launch()
|