|
|
|
from doctest import OutputChecker |
|
import sys |
|
import argparse |
|
import torch |
|
import re |
|
import os |
|
import gradio as gr |
|
from sentence_transformers import SentenceTransformer, util |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
from lm_scorer.models.auto import AutoLMScorer as LMScorer |
|
from sentence_transformers import SentenceTransformer, util |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
model = SentenceTransformer('stsb-distilbert-base', device=device) |
|
batch_size = 1 |
|
scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) |
|
|
|
|
|
def cos_sim(a, b): |
|
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) |
|
|
|
|
|
|
|
def Visual_re_ranker(caption, visual_context_label, visual_context_prob): |
|
caption = caption |
|
visual_context_label= visual_context_label |
|
visual_context_prob = visual_context_prob |
|
caption_emb = model.encode(caption, convert_to_tensor=True) |
|
visual_context_label_emb = model.encode(visual_context_label, convert_to_tensor=True) |
|
|
|
|
|
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb) |
|
sim = sim.cpu().numpy() |
|
sim = str(sim)[1:-1] |
|
sim = str(sim)[1:-1] |
|
|
|
LM = scorer.sentence_score(caption, reduce="mean") |
|
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob))) |
|
|
|
|
|
|
|
return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 } |
|
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
fn=Visual_re_ranker, |
|
description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information", |
|
inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")], |
|
|
|
outputs="label", |
|
) |
|
demo.launch() |
|
|