AhmedSSabir's picture
Update app.py
dff4bb8
raw
history blame
2.3 kB
#!/usr/bin/env python3
from doctest import OutputChecker
import sys
import argparse
#import torch
import re
import os
import gradio as gr
import requests
url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models"
resp = requests.get(url)
#from sentence_transformers import SentenceTransformer, util
#from sklearn.metrics.pairwise import cosine_similarity
from lm_scorer.models.auto import AutoLMScorer as LMScorer
#from sentence_transformers import SentenceTransformer, util
from sklearn.metrics.pairwise import cosine_similarity
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = gr.interface.huggingface.load('sentence-transformers/stsb-distilbert-base')
#SentenceTransformer('stsb-distilbert-base', device=device)
batch_size = 1
scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size)
def cos_sim(a, b):
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b)))
def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
caption = caption
visual_context_label= visual_context_label
visual_context_prob = visual_context_prob
caption_emb = model.encode(caption, convert_to_tensor=True)
visual_context_label_emb = model.encode(visual_context_label, convert_to_tensor=True)
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb)
sim = sim.cpu().numpy()
sim = str(sim)[1:-1]
sim = str(sim)[1:-1]
LM = scorer.sentence_score(caption, reduce="mean")
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob)))
#return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 }
return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 }
#return LM, sim, score
demo = gr.Interface(
fn=Visual_re_ranker,
description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information",
inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")],
#outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")],
outputs="label",
)
demo.launch()