#!/usr/bin/env python3 | |
from doctest import OutputChecker | |
import sys | |
import torch | |
import re | |
import os | |
import gradio as gr | |
import requests | |
import torch | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
from torch.nn.functional import softmax | |
import numpy as np | |
#url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" | |
#resp = requests.get(url) | |
from sentence_transformers import SentenceTransformer, util | |
#from sentence_transformers import SentenceTransformer, util | |
#from sklearn.metrics.pairwise import cosine_similarity | |
#from lm_scorer.models.auto import AutoLMScorer as LMScorer | |
#from sentence_transformers import SentenceTransformer, util | |
#from sklearn.metrics.pairwise import cosine_similarity | |
#device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
#model_sts = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base') | |
model_sts = SentenceTransformer('stsb-distilbert-base') | |
#model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') | |
#batch_size = 1 | |
#scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) | |
#import torch | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
import numpy as np | |
import re | |
# Load pre-trained model | |
# model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True) | |
# #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True) | |
# #model.eval() | |
# #tokenizer = gr.Interface.load('huggingface/distilgpt2') | |
# #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') | |
# tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
# #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') | |
model = GPT2LMHeadModel.from_pretrained('gpt2') | |
# def cloze_prob(text): | |
# whole_text_encoding = tokenizer.encode(text) | |
# # Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word) | |
# text_list = text.split() | |
# stem = ' '.join(text_list[:-1]) | |
# stem_encoding = tokenizer.encode(stem) | |
# # cw_encoding is just the difference between whole_text_encoding and stem_encoding | |
# # note: this might not correspond exactly to the word itself | |
# cw_encoding = whole_text_encoding[len(stem_encoding):] | |
# # Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem. | |
# # Put the whole text encoding into a tensor, and get the model's comprehensive output | |
# tokens_tensor = torch.tensor([whole_text_encoding]) | |
# with torch.no_grad(): | |
# outputs = model(tokens_tensor) | |
# predictions = outputs[0] | |
# logprobs = [] | |
# # start at the stem and get downstream probabilities incrementally from the model(see above) | |
# start = -1-len(cw_encoding) | |
# for j in range(start,-1,1): | |
# raw_output = [] | |
# for i in predictions[-1][j]: | |
# raw_output.append(i.item()) | |
# logprobs.append(np.log(softmax(raw_output))) | |
# # if the critical word is three tokens long, the raw_probabilities should look something like this: | |
# # [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]] | |
# # Then for the i'th token we want to find its associated probability | |
# # this is just: raw_probabilities[i][token_index] | |
# conditional_probs = [] | |
# for cw,prob in zip(cw_encoding,logprobs): | |
# conditional_probs.append(prob[cw]) | |
# # now that you have all the relevant probabilities, return their product. | |
# # This is the probability of the critical word given the context before it. | |
# return np.exp(np.sum(conditional_probs)) | |
def sentence_prob_mean(text): | |
# Tokenize the input text and add special tokens | |
input_ids = tokenizer.encode(text, return_tensors='pt') | |
# Obtain model outputs | |
with torch.no_grad(): | |
outputs = model(input_ids, labels=input_ids) | |
logits = outputs.logits # logits are the model outputs before applying softmax | |
# Shift logits and labels so that tokens are aligned: | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = input_ids[..., 1:].contiguous() | |
# Calculate the softmax probabilities | |
probs = softmax(shift_logits, dim=-1) | |
# Gather the probabilities of the actual token IDs | |
gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1) | |
# Compute the mean probability across the tokens | |
mean_prob = torch.mean(gathered_probs).item() | |
return mean_prob | |
def cos_sim(a, b): | |
return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) | |
def Visual_re_ranker(caption, visual_context_label, visual_context_prob): | |
caption = caption | |
visual_context_label= visual_context_label | |
visual_context_prob = visual_context_prob | |
caption_emb = model_sts.encode(caption, convert_to_tensor=True) | |
visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True) | |
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb) | |
sim = sim.cpu().numpy() | |
sim = str(sim)[1:-1] | |
sim = str(sim)[1:-1] | |
# LM = cloze_prob(caption) | |
LM = sentence_prob_mean(caption) | |
#LM = scorer.sentence_score(caption, reduce="mean") | |
score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob))) | |
#return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } | |
return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 } | |
#return LM, sim, score | |
demo = gr.Interface( | |
fn=Visual_re_ranker, | |
description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information", | |
inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")], | |
#outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")], | |
outputs="label", | |
) | |
demo.launch() | |