#!/usr/bin/env python3 from doctest import OutputChecker import sys import torch import re import os import gradio as gr import requests #url = "https://github.com/simonepri/lm-scorer/tree/master/lm_scorer/models" #resp = requests.get(url) from sentence_transformers import SentenceTransformer, util #from sentence_transformers import SentenceTransformer, util #from sklearn.metrics.pairwise import cosine_similarity #from lm_scorer.models.auto import AutoLMScorer as LMScorer #from sentence_transformers import SentenceTransformer, util #from sklearn.metrics.pairwise import cosine_similarity #device = "cuda:0" if torch.cuda.is_available() else "cpu" #model_sts = gr.Interface.load('huggingface/sentence-transformers/stsb-distilbert-base') model_sts = SentenceTransformer('stsb-distilbert-base') #model_sts = SentenceTransformer('roberta-large-nli-stsb-mean-tokens') #batch_size = 1 #scorer = LMScorer.from_pretrained('gpt2' , device=device, batch_size=batch_size) #import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel import numpy as np import re def Sort_Tuple(tup): # (Sorts in descending order) tup.sort(key = lambda x: x[1]) return tup[::-1] def softmax(x): exps = np.exp(x) return np.divide(exps, np.sum(exps)) # Load pre-trained model # model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True) # #model = gr.Interface.load('huggingface/distilgpt2', output_hidden_states = True, output_attentions = True) # #model.eval() # #tokenizer = gr.Interface.load('huggingface/distilgpt2') # #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') # tokenizer = GPT2Tokenizer.from_pretrained('gpt2') # #tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2') tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') # def cloze_prob(text): # whole_text_encoding = tokenizer.encode(text) # # Parse out the stem of the whole sentence (i.e., the part leading up to but not including the critical word) # text_list = text.split() # stem = ' '.join(text_list[:-1]) # stem_encoding = tokenizer.encode(stem) # # cw_encoding is just the difference between whole_text_encoding and stem_encoding # # note: this might not correspond exactly to the word itself # cw_encoding = whole_text_encoding[len(stem_encoding):] # # Run the entire sentence through the model. Then go "back in time" to look at what the model predicted for each token, starting at the stem. # # Put the whole text encoding into a tensor, and get the model's comprehensive output # tokens_tensor = torch.tensor([whole_text_encoding]) # with torch.no_grad(): # outputs = model(tokens_tensor) # predictions = outputs[0] # logprobs = [] # # start at the stem and get downstream probabilities incrementally from the model(see above) # start = -1-len(cw_encoding) # for j in range(start,-1,1): # raw_output = [] # for i in predictions[-1][j]: # raw_output.append(i.item()) # logprobs.append(np.log(softmax(raw_output))) # # if the critical word is three tokens long, the raw_probabilities should look something like this: # # [ [0.412, 0.001, ... ] ,[0.213, 0.004, ...], [0.002,0.001, 0.93 ...]] # # Then for the i'th token we want to find its associated probability # # this is just: raw_probabilities[i][token_index] # conditional_probs = [] # for cw,prob in zip(cw_encoding,logprobs): # conditional_probs.append(prob[cw]) # # now that you have all the relevant probabilities, return their product. # # This is the probability of the critical word given the context before it. # return np.exp(np.sum(conditional_probs)) def sentence_prob_mean(text): # Tokenize the input text and add special tokens input_ids = tokenizer.encode(text, return_tensors='pt') # Obtain model outputs with torch.no_grad(): outputs = model(input_ids, labels=input_ids) logits = outputs.logits # logits are the model outputs before applying softmax # Shift logits and labels so that tokens are aligned: shift_logits = logits[..., :-1, :].contiguous() shift_labels = input_ids[..., 1:].contiguous() # Calculate the softmax probabilities probs = softmax(shift_logits, dim=-1) # Gather the probabilities of the actual token IDs gathered_probs = torch.gather(probs, 2, shift_labels.unsqueeze(-1)).squeeze(-1) # Compute the mean probability across the tokens mean_prob = torch.mean(gathered_probs).item() return mean_prob def cos_sim(a, b): return np.inner(a, b) / (np.linalg.norm(a) * (np.linalg.norm(b))) def Visual_re_ranker(caption, visual_context_label, visual_context_prob): caption = caption visual_context_label= visual_context_label visual_context_prob = visual_context_prob caption_emb = model_sts.encode(caption, convert_to_tensor=True) visual_context_label_emb = model_sts.encode(visual_context_label, convert_to_tensor=True) sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb) sim = sim.cpu().numpy() sim = str(sim)[1:-1] sim = str(sim)[1:-1] # LM = cloze_prob(caption) LM = sentence_prob_mean(caption) #LM = scorer.sentence_score(caption, reduce="mean") score = pow(float(LM),pow((1-float(sim))/(1+ float(sim)),1-float(visual_context_prob))) #return {"LM": float(LM)/1, "sim": float(sim)/1, "score": float(score)/1 } return {"init hypothesis": float(LM)/1, "Visual Belief Revision": float(score)/1 } #return LM, sim, score demo = gr.Interface( fn=Visual_re_ranker, description="Demo for Belief Revision based Caption Re-ranker with Visual Semantic Information", inputs=[gr.Textbox(value="a city street filled with traffic at night") , gr.Textbox(value="traffic"), gr.Textbox(value="0.7458009")], #outputs=[gr.Textbox(value="Language Model Score") , gr.Textbox(value="Semantic Similarity Score"), gr.Textbox(value="Belief revision score via visual context")], outputs="label", ) demo.launch()