Spaces:
Sleeping
Sleeping
from dataclasses import dataclass, field | |
from .shared_configs import BaseGANVocoderConfig | |
class ParallelWaveganConfig(BaseGANVocoderConfig): | |
"""Defines parameters for ParallelWavegan vocoder. | |
Args: | |
model (str): | |
Model name used for selecting the right configuration at initialization. Defaults to `gan`. | |
discriminator_model (str): One of the discriminators from `TTS.vocoder.models.*_discriminator`. Defaults to | |
'parallel_wavegan_discriminator`. | |
discriminator_model_params (dict): The discriminator model kwargs. Defaults to | |
'{"num_layers": 10}` | |
generator_model (str): One of the generators from TTS.vocoder.models.*`. Every other non-GAN vocoder model is | |
considered as a generator too. Defaults to `parallel_wavegan_generator`. | |
generator_model_param (dict): | |
The generator model kwargs. Defaults to `{"upsample_factors": [4, 4, 4, 4], "stacks": 3, "num_res_blocks": 30}`. | |
batch_size (int): | |
Batch size used at training. Larger values use more memory. Defaults to 16. | |
seq_len (int): | |
Audio segment length used at training. Larger values use more memory. Defaults to 8192. | |
pad_short (int): | |
Additional padding applied to the audio samples shorter than `seq_len`. Defaults to 0. | |
use_noise_augment (bool): | |
enable / disable random noise added to the input waveform. The noise is added after computing the | |
features. Defaults to True. | |
use_cache (bool): | |
enable / disable in memory caching of the computed features. It can cause OOM error if the system RAM is | |
not large enough. Defaults to True. | |
steps_to_start_discriminator (int): | |
Number of steps required to start training the discriminator. Defaults to 0. | |
use_stft_loss (bool):` | |
enable / disable use of STFT loss originally used by ParallelWaveGAN model. Defaults to True. | |
use_subband_stft (bool): | |
enable / disable use of subband loss computation originally used by MultiBandMelgan model. Defaults to True. | |
use_mse_gan_loss (bool): | |
enable / disable using Mean Squeare Error GAN loss. Defaults to True. | |
use_hinge_gan_loss (bool): | |
enable / disable using Hinge GAN loss. You should choose either Hinge or MSE loss for training GAN models. | |
Defaults to False. | |
use_feat_match_loss (bool): | |
enable / disable using Feature Matching loss originally used by MelGAN model. Defaults to True. | |
use_l1_spec_loss (bool): | |
enable / disable using L1 spectrogram loss originally used by HifiGAN model. Defaults to False. | |
stft_loss_params (dict): STFT loss parameters. Default to | |
`{"n_ffts": [1024, 2048, 512], "hop_lengths": [120, 240, 50], "win_lengths": [600, 1200, 240]}` | |
stft_loss_weight (float): STFT loss weight that multiplies the computed loss before summing up the total | |
model loss. Defaults to 0.5. | |
subband_stft_loss_weight (float): | |
Subband STFT loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. | |
mse_G_loss_weight (float): | |
MSE generator loss weight that multiplies the computed loss before summing up the total loss. faults to 2.5. | |
hinge_G_loss_weight (float): | |
Hinge generator loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. | |
feat_match_loss_weight (float): | |
Feature matching loss weight that multiplies the computed loss before summing up the total loss. faults to 0. | |
l1_spec_loss_weight (float): | |
L1 spectrogram loss weight that multiplies the computed loss before summing up the total loss. Defaults to 0. | |
lr_gen (float): | |
Generator model initial learning rate. Defaults to 0.0002. | |
lr_disc (float): | |
Discriminator model initial learning rate. Defaults to 0.0002. | |
optimizer (torch.optim.Optimizer): | |
Optimizer used for the training. Defaults to `AdamW`. | |
optimizer_params (dict): | |
Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}` | |
lr_scheduler_gen (torch.optim.Scheduler): | |
Learning rate scheduler for the generator. Defaults to `ExponentialLR`. | |
lr_scheduler_gen_params (dict): | |
Parameters for the generator learning rate scheduler. Defaults to `{"gamma": 0.5, "step_size": 200000, "last_epoch": -1}`. | |
lr_scheduler_disc (torch.optim.Scheduler): | |
Learning rate scheduler for the discriminator. Defaults to `ExponentialLR`. | |
lr_scheduler_dict_params (dict): | |
Parameters for the discriminator learning rate scheduler. Defaults to `{"gamma": 0.5, "step_size": 200000, "last_epoch": -1}`. | |
""" | |
model: str = "parallel_wavegan" | |
# Model specific params | |
discriminator_model: str = "parallel_wavegan_discriminator" | |
discriminator_model_params: dict = field(default_factory=lambda: {"num_layers": 10}) | |
generator_model: str = "parallel_wavegan_generator" | |
generator_model_params: dict = field( | |
default_factory=lambda: {"upsample_factors": [4, 4, 4, 4], "stacks": 3, "num_res_blocks": 30} | |
) | |
# Training - overrides | |
batch_size: int = 6 | |
seq_len: int = 25600 | |
pad_short: int = 2000 | |
use_noise_augment: bool = False | |
use_cache: bool = True | |
steps_to_start_discriminator: int = 200000 | |
target_loss: str = "loss_1" | |
# LOSS PARAMETERS - overrides | |
use_stft_loss: bool = True | |
use_subband_stft_loss: bool = False | |
use_mse_gan_loss: bool = True | |
use_hinge_gan_loss: bool = False | |
use_feat_match_loss: bool = False # requires MelGAN Discriminators (MelGAN and HifiGAN) | |
use_l1_spec_loss: bool = False | |
stft_loss_params: dict = field( | |
default_factory=lambda: { | |
"n_ffts": [1024, 2048, 512], | |
"hop_lengths": [120, 240, 50], | |
"win_lengths": [600, 1200, 240], | |
} | |
) | |
# loss weights - overrides | |
stft_loss_weight: float = 0.5 | |
subband_stft_loss_weight: float = 0 | |
mse_G_loss_weight: float = 2.5 | |
hinge_G_loss_weight: float = 0 | |
feat_match_loss_weight: float = 0 | |
l1_spec_loss_weight: float = 0 | |
# optimizer overrides | |
lr_gen: float = 0.0002 # Initial learning rate. | |
lr_disc: float = 0.0002 # Initial learning rate. | |
optimizer: str = "AdamW" | |
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "weight_decay": 0.0}) | |
lr_scheduler_gen: str = "StepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html | |
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.5, "step_size": 200000, "last_epoch": -1}) | |
lr_scheduler_disc: str = "StepLR" # one of the schedulers from https:#pytorch.org/docs/stable/optim.html | |
lr_scheduler_disc_params: dict = field( | |
default_factory=lambda: {"gamma": 0.5, "step_size": 200000, "last_epoch": -1} | |
) | |
scheduler_after_epoch: bool = False | |