Spaces:
Sleeping
Sleeping
import glob | |
import os | |
import random | |
from multiprocessing import Manager | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
class GANDataset(Dataset): | |
""" | |
GAN Dataset searchs for all the wav files under root path | |
and converts them to acoustic features on the fly and returns | |
random segments of (audio, feature) couples. | |
""" | |
def __init__( | |
self, | |
ap, | |
items, | |
seq_len, | |
hop_len, | |
pad_short, | |
conv_pad=2, | |
return_pairs=False, | |
is_training=True, | |
return_segments=True, | |
use_noise_augment=False, | |
use_cache=False, | |
verbose=False, | |
): | |
super().__init__() | |
self.ap = ap | |
self.item_list = items | |
self.compute_feat = not isinstance(items[0], (tuple, list)) | |
self.seq_len = seq_len | |
self.hop_len = hop_len | |
self.pad_short = pad_short | |
self.conv_pad = conv_pad | |
self.return_pairs = return_pairs | |
self.is_training = is_training | |
self.return_segments = return_segments | |
self.use_cache = use_cache | |
self.use_noise_augment = use_noise_augment | |
self.verbose = verbose | |
assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." | |
self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) | |
# map G and D instances | |
self.G_to_D_mappings = list(range(len(self.item_list))) | |
self.shuffle_mapping() | |
# cache acoustic features | |
if use_cache: | |
self.create_feature_cache() | |
def create_feature_cache(self): | |
self.manager = Manager() | |
self.cache = self.manager.list() | |
self.cache += [None for _ in range(len(self.item_list))] | |
def find_wav_files(path): | |
return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) | |
def __len__(self): | |
return len(self.item_list) | |
def __getitem__(self, idx): | |
"""Return different items for Generator and Discriminator and | |
cache acoustic features""" | |
# set the seed differently for each worker | |
if torch.utils.data.get_worker_info(): | |
random.seed(torch.utils.data.get_worker_info().seed) | |
if self.return_segments: | |
item1 = self.load_item(idx) | |
if self.return_pairs: | |
idx2 = self.G_to_D_mappings[idx] | |
item2 = self.load_item(idx2) | |
return item1, item2 | |
return item1 | |
item1 = self.load_item(idx) | |
return item1 | |
def _pad_short_samples(self, audio, mel=None): | |
"""Pad samples shorter than the output sequence length""" | |
if len(audio) < self.seq_len: | |
audio = np.pad(audio, (0, self.seq_len - len(audio)), mode="constant", constant_values=0.0) | |
if mel is not None and mel.shape[1] < self.feat_frame_len: | |
pad_value = self.ap.melspectrogram(np.zeros([self.ap.win_length]))[:, 0] | |
mel = np.pad( | |
mel, | |
([0, 0], [0, self.feat_frame_len - mel.shape[1]]), | |
mode="constant", | |
constant_values=pad_value.mean(), | |
) | |
return audio, mel | |
def shuffle_mapping(self): | |
random.shuffle(self.G_to_D_mappings) | |
def load_item(self, idx): | |
"""load (audio, feat) couple""" | |
if self.compute_feat: | |
# compute features from wav | |
wavpath = self.item_list[idx] | |
# print(wavpath) | |
if self.use_cache and self.cache[idx] is not None: | |
audio, mel = self.cache[idx] | |
else: | |
audio = self.ap.load_wav(wavpath) | |
mel = self.ap.melspectrogram(audio) | |
audio, mel = self._pad_short_samples(audio, mel) | |
else: | |
# load precomputed features | |
wavpath, feat_path = self.item_list[idx] | |
if self.use_cache and self.cache[idx] is not None: | |
audio, mel = self.cache[idx] | |
else: | |
audio = self.ap.load_wav(wavpath) | |
mel = np.load(feat_path) | |
audio, mel = self._pad_short_samples(audio, mel) | |
# correct the audio length wrt padding applied in stft | |
audio = np.pad(audio, (0, self.hop_len), mode="edge") | |
audio = audio[: mel.shape[-1] * self.hop_len] | |
assert ( | |
mel.shape[-1] * self.hop_len == audio.shape[-1] | |
), f" [!] {mel.shape[-1] * self.hop_len} vs {audio.shape[-1]}" | |
audio = torch.from_numpy(audio).float().unsqueeze(0) | |
mel = torch.from_numpy(mel).float().squeeze(0) | |
if self.return_segments: | |
max_mel_start = mel.shape[1] - self.feat_frame_len | |
mel_start = random.randint(0, max_mel_start) | |
mel_end = mel_start + self.feat_frame_len | |
mel = mel[:, mel_start:mel_end] | |
audio_start = mel_start * self.hop_len | |
audio = audio[:, audio_start : audio_start + self.seq_len] | |
if self.use_noise_augment and self.is_training and self.return_segments: | |
audio = audio + (1 / 32768) * torch.randn_like(audio) | |
return (mel, audio) | |