Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from torch.utils.data import Dataset | |
from TTS.utils.audio.numpy_transforms import mulaw_encode, quantize | |
class WaveRNNDataset(Dataset): | |
""" | |
WaveRNN Dataset searchs for all the wav files under root path | |
and converts them to acoustic features on the fly. | |
""" | |
def __init__( | |
self, ap, items, seq_len, hop_len, pad, mode, mulaw, is_training=True, verbose=False, return_segments=True | |
): | |
super().__init__() | |
self.ap = ap | |
self.compute_feat = not isinstance(items[0], (tuple, list)) | |
self.item_list = items | |
self.seq_len = seq_len | |
self.hop_len = hop_len | |
self.mel_len = seq_len // hop_len | |
self.pad = pad | |
self.mode = mode | |
self.mulaw = mulaw | |
self.is_training = is_training | |
self.verbose = verbose | |
self.return_segments = return_segments | |
assert self.seq_len % self.hop_len == 0 | |
def __len__(self): | |
return len(self.item_list) | |
def __getitem__(self, index): | |
item = self.load_item(index) | |
return item | |
def load_test_samples(self, num_samples): | |
samples = [] | |
return_segments = self.return_segments | |
self.return_segments = False | |
for idx in range(num_samples): | |
mel, audio, _ = self.load_item(idx) | |
samples.append([mel, audio]) | |
self.return_segments = return_segments | |
return samples | |
def load_item(self, index): | |
""" | |
load (audio, feat) couple if feature_path is set | |
else compute it on the fly | |
""" | |
if self.compute_feat: | |
wavpath = self.item_list[index] | |
audio = self.ap.load_wav(wavpath) | |
if self.return_segments: | |
min_audio_len = 2 * self.seq_len + (2 * self.pad * self.hop_len) | |
else: | |
min_audio_len = audio.shape[0] + (2 * self.pad * self.hop_len) | |
if audio.shape[0] < min_audio_len: | |
print(" [!] Instance is too short! : {}".format(wavpath)) | |
audio = np.pad(audio, [0, min_audio_len - audio.shape[0] + self.hop_len]) | |
mel = self.ap.melspectrogram(audio) | |
if self.mode in ["gauss", "mold"]: | |
x_input = audio | |
elif isinstance(self.mode, int): | |
x_input = ( | |
mulaw_encode(wav=audio, mulaw_qc=self.mode) | |
if self.mulaw | |
else quantize(x=audio, quantize_bits=self.mode) | |
) | |
else: | |
raise RuntimeError("Unknown dataset mode - ", self.mode) | |
else: | |
wavpath, feat_path = self.item_list[index] | |
mel = np.load(feat_path.replace("/quant/", "/mel/")) | |
if mel.shape[-1] < self.mel_len + 2 * self.pad: | |
print(" [!] Instance is too short! : {}".format(wavpath)) | |
self.item_list[index] = self.item_list[index + 1] | |
feat_path = self.item_list[index] | |
mel = np.load(feat_path.replace("/quant/", "/mel/")) | |
if self.mode in ["gauss", "mold"]: | |
x_input = self.ap.load_wav(wavpath) | |
elif isinstance(self.mode, int): | |
x_input = np.load(feat_path.replace("/mel/", "/quant/")) | |
else: | |
raise RuntimeError("Unknown dataset mode - ", self.mode) | |
return mel, x_input, wavpath | |
def collate(self, batch): | |
mel_win = self.seq_len // self.hop_len + 2 * self.pad | |
max_offsets = [x[0].shape[-1] - (mel_win + 2 * self.pad) for x in batch] | |
mel_offsets = [np.random.randint(0, offset) for offset in max_offsets] | |
sig_offsets = [(offset + self.pad) * self.hop_len for offset in mel_offsets] | |
mels = [x[0][:, mel_offsets[i] : mel_offsets[i] + mel_win] for i, x in enumerate(batch)] | |
coarse = [x[1][sig_offsets[i] : sig_offsets[i] + self.seq_len + 1] for i, x in enumerate(batch)] | |
mels = np.stack(mels).astype(np.float32) | |
if self.mode in ["gauss", "mold"]: | |
coarse = np.stack(coarse).astype(np.float32) | |
coarse = torch.FloatTensor(coarse) | |
x_input = coarse[:, : self.seq_len] | |
elif isinstance(self.mode, int): | |
coarse = np.stack(coarse).astype(np.int64) | |
coarse = torch.LongTensor(coarse) | |
x_input = 2 * coarse[:, : self.seq_len].float() / (2**self.mode - 1.0) - 1.0 | |
y_coarse = coarse[:, 1:] | |
mels = torch.FloatTensor(mels) | |
return x_input, mels, y_coarse | |