add enhancer app
Browse files- .gitignore +165 -0
- README.md +25 -3
- examples/clarity_bird.webp +3 -0
- examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg +3 -0
- examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg +3 -0
- examples/kara-eads-L7EwHkq1B2s-unsplash.jpg +3 -0
- examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg +3 -0
- examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg +3 -0
- examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg +3 -0
- examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg +3 -0
- examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg +3 -0
- requirements.txt +4 -0
- src/app.py +279 -0
- src/enhancer.py +102 -0
- src/esrgan_model.py +1068 -0
.gitignore
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio_cached_examples/
|
2 |
+
|
3 |
+
# https://github.com/github/gitignore/blob/main/Python.gitignore
|
4 |
+
# Byte-compiled / optimized / DLL files
|
5 |
+
__pycache__/
|
6 |
+
*.py[cod]
|
7 |
+
*$py.class
|
8 |
+
|
9 |
+
# C extensions
|
10 |
+
*.so
|
11 |
+
|
12 |
+
# Distribution / packaging
|
13 |
+
.Python
|
14 |
+
build/
|
15 |
+
develop-eggs/
|
16 |
+
dist/
|
17 |
+
downloads/
|
18 |
+
eggs/
|
19 |
+
.eggs/
|
20 |
+
lib/
|
21 |
+
lib64/
|
22 |
+
parts/
|
23 |
+
sdist/
|
24 |
+
var/
|
25 |
+
wheels/
|
26 |
+
share/python-wheels/
|
27 |
+
*.egg-info/
|
28 |
+
.installed.cfg
|
29 |
+
*.egg
|
30 |
+
MANIFEST
|
31 |
+
|
32 |
+
# PyInstaller
|
33 |
+
# Usually these files are written by a python script from a template
|
34 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
35 |
+
*.manifest
|
36 |
+
*.spec
|
37 |
+
|
38 |
+
# Installer logs
|
39 |
+
pip-log.txt
|
40 |
+
pip-delete-this-directory.txt
|
41 |
+
|
42 |
+
# Unit test / coverage reports
|
43 |
+
htmlcov/
|
44 |
+
.tox/
|
45 |
+
.nox/
|
46 |
+
.coverage
|
47 |
+
.coverage.*
|
48 |
+
.cache
|
49 |
+
nosetests.xml
|
50 |
+
coverage.xml
|
51 |
+
*.cover
|
52 |
+
*.py,cover
|
53 |
+
.hypothesis/
|
54 |
+
.pytest_cache/
|
55 |
+
cover/
|
56 |
+
|
57 |
+
# Translations
|
58 |
+
*.mo
|
59 |
+
*.pot
|
60 |
+
|
61 |
+
# Django stuff:
|
62 |
+
*.log
|
63 |
+
local_settings.py
|
64 |
+
db.sqlite3
|
65 |
+
db.sqlite3-journal
|
66 |
+
|
67 |
+
# Flask stuff:
|
68 |
+
instance/
|
69 |
+
.webassets-cache
|
70 |
+
|
71 |
+
# Scrapy stuff:
|
72 |
+
.scrapy
|
73 |
+
|
74 |
+
# Sphinx documentation
|
75 |
+
docs/_build/
|
76 |
+
|
77 |
+
# PyBuilder
|
78 |
+
.pybuilder/
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
# For a library or package, you might want to ignore these files since the code is
|
90 |
+
# intended to run in multiple environments; otherwise, check them in:
|
91 |
+
# .python-version
|
92 |
+
|
93 |
+
# pipenv
|
94 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
95 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
96 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
97 |
+
# install all needed dependencies.
|
98 |
+
#Pipfile.lock
|
99 |
+
|
100 |
+
# poetry
|
101 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
102 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
103 |
+
# commonly ignored for libraries.
|
104 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
105 |
+
#poetry.lock
|
106 |
+
|
107 |
+
# pdm
|
108 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
109 |
+
#pdm.lock
|
110 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
111 |
+
# in version control.
|
112 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
113 |
+
.pdm.toml
|
114 |
+
.pdm-python
|
115 |
+
.pdm-build/
|
116 |
+
|
117 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
118 |
+
__pypackages__/
|
119 |
+
|
120 |
+
# Celery stuff
|
121 |
+
celerybeat-schedule
|
122 |
+
celerybeat.pid
|
123 |
+
|
124 |
+
# SageMath parsed files
|
125 |
+
*.sage.py
|
126 |
+
|
127 |
+
# Environments
|
128 |
+
.env
|
129 |
+
.venv
|
130 |
+
env/
|
131 |
+
venv/
|
132 |
+
ENV/
|
133 |
+
env.bak/
|
134 |
+
venv.bak/
|
135 |
+
|
136 |
+
# Spyder project settings
|
137 |
+
.spyderproject
|
138 |
+
.spyproject
|
139 |
+
|
140 |
+
# Rope project settings
|
141 |
+
.ropeproject
|
142 |
+
|
143 |
+
# mkdocs documentation
|
144 |
+
/site
|
145 |
+
|
146 |
+
# mypy
|
147 |
+
.mypy_cache/
|
148 |
+
.dmypy.json
|
149 |
+
dmypy.json
|
150 |
+
|
151 |
+
# Pyre type checker
|
152 |
+
.pyre/
|
153 |
+
|
154 |
+
# pytype static type analyzer
|
155 |
+
.pytype/
|
156 |
+
|
157 |
+
# Cython debug symbols
|
158 |
+
cython_debug/
|
159 |
+
|
160 |
+
# PyCharm
|
161 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
162 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
163 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
164 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
165 |
+
#.idea/
|
README.md
CHANGED
@@ -4,9 +4,31 @@ emoji: 🖼️🪄
|
|
4 |
colorFrom: pink
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
colorFrom: pink
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.38.1
|
8 |
+
app_file: src/app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
# Enhancer
|
13 |
+
|
14 |
+
## Links
|
15 |
+
|
16 |
+
- https://blog.finegrain.ai/posts/reproducing-clarity-upscaler/
|
17 |
+
- https://github.com/finegrain-ai/refiners
|
18 |
+
- https://github.com/philz1337x/clarity-upscaler
|
19 |
+
- https://finegrain.ai/
|
20 |
+
|
21 |
+
## Example image credits
|
22 |
+
|
23 |
+
- https://r2.clarityai.co/inputs/13_before.webp by [Clarity AI](https://clarityai.co/)
|
24 |
+
- https://unsplash.com/photos/L7EwHkq1B2s by [Kara Eads](https://unsplash.com/@karaeads)
|
25 |
+
- https://unsplash.com/photos/gtDYwUIr9Vg by [Melissa Walker Horn](https://unsplash.com/@eilivsonas)
|
26 |
+
- https://unsplash.com/photos/rW-I87aPY5Y by [Karina Vorozheeva](https://unsplash.com/@_k_arinn)
|
27 |
+
- https://unsplash.com/photos/jggQZkITXng by [Tadeusz Lakota](https://unsplash.com/@tadekl)
|
28 |
+
- https://unsplash.com/photos/hIaOPjYCEj4 by [KaroGraphix Photography](https://unsplash.com/@karographix)
|
29 |
+
- https://unsplash.com/photos/X53e51WfjlE by [Ryoji Iwata](https://unsplash.com/@ryoji__iwata)
|
30 |
+
- https://unsplash.com/photos/gJH8AqpiSEU by [Edgar.infocus](https://unsplash.com/@edgar_infocus)
|
31 |
+
- https://unsplash.com/photos/_XjW3oN8UOE by [Jeremy Wallace](https://unsplash.com/@jdanielw)
|
32 |
+
|
33 |
+
All unsplash images are under the [Unplash License](https://unsplash.com/license). \
|
34 |
+
All unsplash images were downloaded in the "small" format (width=640px).
|
examples/clarity_bird.webp
ADDED
Git LFS Details
|
examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg
ADDED
Git LFS Details
|
examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg
ADDED
Git LFS Details
|
examples/kara-eads-L7EwHkq1B2s-unsplash.jpg
ADDED
Git LFS Details
|
examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg
ADDED
Git LFS Details
|
examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg
ADDED
Git LFS Details
|
examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg
ADDED
Git LFS Details
|
examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg
ADDED
Git LFS Details
|
examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg
ADDED
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/finegrain-ai/refiners@299217f45ab788bb7e670bcafb37a789a054461f
|
2 |
+
gradio_imageslider==0.0.20
|
3 |
+
spaces==0.28.3
|
4 |
+
numpy<2.0.0
|
src/app.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
# see https://huggingface.co/spaces/zero-gpu-explorers/README/discussions/85
|
6 |
+
def my_arange(*args, **kwargs):
|
7 |
+
return torch.arange(*args, **kwargs)
|
8 |
+
|
9 |
+
|
10 |
+
torch.arange = my_arange
|
11 |
+
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
from gradio_imageslider import ImageSlider
|
16 |
+
from huggingface_hub import hf_hub_download
|
17 |
+
from PIL import Image
|
18 |
+
from refiners.fluxion.utils import manual_seed
|
19 |
+
from refiners.foundationals.latent_diffusion import Solver, solvers
|
20 |
+
|
21 |
+
from enhancer import ESRGANUpscaler, ESRGANUpscalerCheckpoints
|
22 |
+
|
23 |
+
TITLE = """
|
24 |
+
<h1 align="center">Image Enhancer, implemented using refiners</h1>
|
25 |
+
|
26 |
+
<p>
|
27 |
+
<center>
|
28 |
+
<a style="font-size: 1.25rem;" href="https://blog.finegrain.ai/posts/reproducing-clarity-upscaler/" target="_blank">[blog post]</a>
|
29 |
+
<a style="font-size: 1.25rem;" href="https://github.com/finegrain-ai/refiners" target="_blank">[refiners]</a>
|
30 |
+
<a style="font-size: 1.25rem;" href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[clarity-upscaler]</a>
|
31 |
+
<a style="font-size: 1.25rem;" href="https://finegrain.ai/" target="_blank">[finegrain]</a>
|
32 |
+
</center>
|
33 |
+
</p>
|
34 |
+
"""
|
35 |
+
|
36 |
+
CHECKPOINTS = ESRGANUpscalerCheckpoints(
|
37 |
+
unet=Path(
|
38 |
+
hf_hub_download(
|
39 |
+
repo_id="refiners/juggernaut.reborn",
|
40 |
+
filename="unet.safetensors",
|
41 |
+
revision="948510aaf4c8e8e9b32b5a7c25736422253f7b93",
|
42 |
+
)
|
43 |
+
),
|
44 |
+
clip_text_encoder=Path(
|
45 |
+
hf_hub_download(
|
46 |
+
repo_id="refiners/juggernaut.reborn",
|
47 |
+
filename="text_encoder.safetensors",
|
48 |
+
revision="948510aaf4c8e8e9b32b5a7c25736422253f7b93",
|
49 |
+
)
|
50 |
+
),
|
51 |
+
lda=Path(
|
52 |
+
hf_hub_download(
|
53 |
+
repo_id="refiners/juggernaut.reborn",
|
54 |
+
filename="autoencoder.safetensors",
|
55 |
+
revision="948510aaf4c8e8e9b32b5a7c25736422253f7b93",
|
56 |
+
)
|
57 |
+
),
|
58 |
+
controlnet_tile=Path(
|
59 |
+
hf_hub_download(
|
60 |
+
repo_id="refiners/controlnet.sd15.tile",
|
61 |
+
filename="model.safetensors",
|
62 |
+
revision="48ced6ff8bfa873a8976fa467c3629a240643387",
|
63 |
+
)
|
64 |
+
),
|
65 |
+
esrgan=Path(
|
66 |
+
hf_hub_download(
|
67 |
+
repo_id="philz1337x/upscaler",
|
68 |
+
filename="4x-UltraSharp.pth",
|
69 |
+
revision="011deacac8270114eb7d2eeff4fe6fa9a837be70",
|
70 |
+
)
|
71 |
+
),
|
72 |
+
negative_embedding=Path(
|
73 |
+
hf_hub_download(
|
74 |
+
repo_id="philz1337x/embeddings",
|
75 |
+
filename="JuggernautNegative-neg.pt",
|
76 |
+
revision="203caa7e9cc2bc225031a4021f6ab1ded283454a",
|
77 |
+
)
|
78 |
+
),
|
79 |
+
negative_embedding_key="string_to_param.*",
|
80 |
+
loras={
|
81 |
+
"more_details": Path(
|
82 |
+
hf_hub_download(
|
83 |
+
repo_id="philz1337x/loras",
|
84 |
+
filename="more_details.safetensors",
|
85 |
+
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
86 |
+
)
|
87 |
+
),
|
88 |
+
"sdxl_render": Path(
|
89 |
+
hf_hub_download(
|
90 |
+
repo_id="philz1337x/loras",
|
91 |
+
filename="SDXLrender_v2.0.safetensors",
|
92 |
+
revision="a3802c0280c0d00c2ab18d37454a8744c44e474e",
|
93 |
+
)
|
94 |
+
),
|
95 |
+
},
|
96 |
+
)
|
97 |
+
|
98 |
+
LORA_SCALES = {
|
99 |
+
"more_details": 0.5,
|
100 |
+
"sdxl_render": 1.0,
|
101 |
+
}
|
102 |
+
|
103 |
+
# initialize the enhancer, on the cpu
|
104 |
+
DEVICE_CPU = torch.device("cpu")
|
105 |
+
DTYPE = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
|
106 |
+
enhancer = ESRGANUpscaler(checkpoints=CHECKPOINTS, device=DEVICE_CPU, dtype=DTYPE)
|
107 |
+
|
108 |
+
# "move" the enhancer to the gpu, this is handled by Zero GPU
|
109 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
110 |
+
enhancer.to(device=DEVICE, dtype=DTYPE)
|
111 |
+
|
112 |
+
|
113 |
+
@spaces.GPU
|
114 |
+
def process(
|
115 |
+
input_image: Image.Image,
|
116 |
+
prompt: str = "masterpiece, best quality, highres",
|
117 |
+
negative_prompt: str = "worst quality, low quality, normal quality",
|
118 |
+
seed: int = 42,
|
119 |
+
upscale_factor: int = 2,
|
120 |
+
controlnet_scale: float = 0.6,
|
121 |
+
controlnet_decay: float = 1.0,
|
122 |
+
condition_scale: int = 6,
|
123 |
+
tile_width: int = 112,
|
124 |
+
tile_height: int = 144,
|
125 |
+
denoise_strength: float = 0.35,
|
126 |
+
num_inference_steps: int = 18,
|
127 |
+
solver: str = "DDIM",
|
128 |
+
) -> tuple[Image.Image, Image.Image]:
|
129 |
+
manual_seed(seed)
|
130 |
+
|
131 |
+
solver_type: type[Solver] = getattr(solvers, solver)
|
132 |
+
|
133 |
+
enhanced_image = enhancer.upscale(
|
134 |
+
image=input_image,
|
135 |
+
prompt=prompt,
|
136 |
+
negative_prompt=negative_prompt,
|
137 |
+
upscale_factor=upscale_factor,
|
138 |
+
controlnet_scale=controlnet_scale,
|
139 |
+
controlnet_scale_decay=controlnet_decay,
|
140 |
+
condition_scale=condition_scale,
|
141 |
+
tile_size=(tile_height, tile_width),
|
142 |
+
denoise_strength=denoise_strength,
|
143 |
+
num_inference_steps=num_inference_steps,
|
144 |
+
loras_scale=LORA_SCALES,
|
145 |
+
solver_type=solver_type,
|
146 |
+
)
|
147 |
+
|
148 |
+
return (input_image, enhanced_image)
|
149 |
+
|
150 |
+
|
151 |
+
with gr.Blocks() as demo:
|
152 |
+
gr.HTML(TITLE)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column():
|
156 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
157 |
+
run_button = gr.ClearButton(components=None, value="Enhance Image")
|
158 |
+
with gr.Column():
|
159 |
+
output_slider = ImageSlider(label="Before / After")
|
160 |
+
run_button.add(output_slider)
|
161 |
+
|
162 |
+
with gr.Accordion("Advanced Options", open=False):
|
163 |
+
prompt = gr.Textbox(
|
164 |
+
label="Prompt",
|
165 |
+
placeholder="masterpiece, best quality, highres",
|
166 |
+
)
|
167 |
+
negative_prompt = gr.Textbox(
|
168 |
+
label="Negative Prompt",
|
169 |
+
placeholder="worst quality, low quality, normal quality",
|
170 |
+
)
|
171 |
+
seed = gr.Slider(
|
172 |
+
minimum=0,
|
173 |
+
maximum=10_000,
|
174 |
+
value=42,
|
175 |
+
step=1,
|
176 |
+
label="Seed",
|
177 |
+
)
|
178 |
+
upscale_factor = gr.Slider(
|
179 |
+
minimum=1,
|
180 |
+
maximum=4,
|
181 |
+
value=2,
|
182 |
+
step=0.2,
|
183 |
+
label="Upscale Factor",
|
184 |
+
)
|
185 |
+
controlnet_scale = gr.Slider(
|
186 |
+
minimum=0,
|
187 |
+
maximum=1.5,
|
188 |
+
value=0.6,
|
189 |
+
step=0.1,
|
190 |
+
label="ControlNet Scale",
|
191 |
+
)
|
192 |
+
controlnet_decay = gr.Slider(
|
193 |
+
minimum=0.5,
|
194 |
+
maximum=1,
|
195 |
+
value=1.0,
|
196 |
+
step=0.025,
|
197 |
+
label="ControlNet Scale Decay",
|
198 |
+
)
|
199 |
+
condition_scale = gr.Slider(
|
200 |
+
minimum=2,
|
201 |
+
maximum=20,
|
202 |
+
value=6,
|
203 |
+
step=1,
|
204 |
+
label="Condition Scale",
|
205 |
+
)
|
206 |
+
tile_width = gr.Slider(
|
207 |
+
minimum=64,
|
208 |
+
maximum=200,
|
209 |
+
value=112,
|
210 |
+
step=1,
|
211 |
+
label="Latent Tile Width",
|
212 |
+
)
|
213 |
+
tile_height = gr.Slider(
|
214 |
+
minimum=64,
|
215 |
+
maximum=200,
|
216 |
+
value=144,
|
217 |
+
step=1,
|
218 |
+
label="Latent Tile Height",
|
219 |
+
)
|
220 |
+
denoise_strength = gr.Slider(
|
221 |
+
minimum=0,
|
222 |
+
maximum=1,
|
223 |
+
value=0.35,
|
224 |
+
step=0.1,
|
225 |
+
label="Denoise Strength",
|
226 |
+
)
|
227 |
+
num_inference_steps = gr.Slider(
|
228 |
+
minimum=1,
|
229 |
+
maximum=30,
|
230 |
+
value=18,
|
231 |
+
step=1,
|
232 |
+
label="Number of Inference Steps",
|
233 |
+
)
|
234 |
+
solver = gr.Radio(
|
235 |
+
choices=["DDIM", "DPMSolver"],
|
236 |
+
value="DDIM",
|
237 |
+
label="Solver",
|
238 |
+
)
|
239 |
+
|
240 |
+
run_button.click(
|
241 |
+
fn=process,
|
242 |
+
inputs=[
|
243 |
+
input_image,
|
244 |
+
prompt,
|
245 |
+
negative_prompt,
|
246 |
+
seed,
|
247 |
+
upscale_factor,
|
248 |
+
controlnet_scale,
|
249 |
+
controlnet_decay,
|
250 |
+
condition_scale,
|
251 |
+
tile_width,
|
252 |
+
tile_height,
|
253 |
+
denoise_strength,
|
254 |
+
num_inference_steps,
|
255 |
+
solver,
|
256 |
+
],
|
257 |
+
outputs=output_slider,
|
258 |
+
)
|
259 |
+
|
260 |
+
gr.Examples(
|
261 |
+
examples=[
|
262 |
+
"examples/kara-eads-L7EwHkq1B2s-unsplash.jpg",
|
263 |
+
"examples/clarity_bird.webp",
|
264 |
+
"examples/edgar-infocus-gJH8AqpiSEU-unsplash.jpg",
|
265 |
+
"examples/jeremy-wallace-_XjW3oN8UOE-unsplash.jpg",
|
266 |
+
"examples/karina-vorozheeva-rW-I87aPY5Y-unsplash.jpg",
|
267 |
+
"examples/karographix-photography-hIaOPjYCEj4-unsplash.jpg",
|
268 |
+
"examples/melissa-walker-horn-gtDYwUIr9Vg-unsplash.jpg",
|
269 |
+
"examples/ryoji-iwata-X53e51WfjlE-unsplash.jpg",
|
270 |
+
"examples/tadeusz-lakota-jggQZkITXng-unsplash.jpg",
|
271 |
+
],
|
272 |
+
inputs=[input_image],
|
273 |
+
outputs=output_slider,
|
274 |
+
fn=process,
|
275 |
+
cache_examples="lazy",
|
276 |
+
run_on_click=False,
|
277 |
+
)
|
278 |
+
|
279 |
+
demo.launch(share=False)
|
src/enhancer.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from refiners.foundationals.clip.concepts import ConceptExtender
|
8 |
+
from refiners.foundationals.latent_diffusion.stable_diffusion_1.multi_upscaler import (
|
9 |
+
MultiUpscaler,
|
10 |
+
UpscalerCheckpoints,
|
11 |
+
)
|
12 |
+
|
13 |
+
from esrgan_model import UpscalerESRGAN
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass(kw_only=True)
|
17 |
+
class ESRGANUpscalerCheckpoints(UpscalerCheckpoints):
|
18 |
+
esrgan: Path | None = None
|
19 |
+
|
20 |
+
|
21 |
+
class ESRGANUpscaler(MultiUpscaler):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
checkpoints: ESRGANUpscalerCheckpoints,
|
25 |
+
device: torch.device,
|
26 |
+
dtype: torch.dtype,
|
27 |
+
) -> None:
|
28 |
+
super().__init__(checkpoints=checkpoints, device=device, dtype=dtype)
|
29 |
+
self.esrgan = self.load_esrgan(checkpoints.esrgan)
|
30 |
+
|
31 |
+
def to(self, device: torch.device, dtype: torch.dtype):
|
32 |
+
self.esrgan.to(device=device, dtype=dtype)
|
33 |
+
self.sd = self.sd.to(device=device, dtype=dtype)
|
34 |
+
self.device = device
|
35 |
+
self.dtype = dtype
|
36 |
+
|
37 |
+
def load_esrgan(self, path: Path | None) -> UpscalerESRGAN | None:
|
38 |
+
if path is None:
|
39 |
+
return None
|
40 |
+
return UpscalerESRGAN(path, device=self.device, dtype=self.dtype)
|
41 |
+
|
42 |
+
def load_negative_embedding(self, path: Path | None, key: str | None) -> str:
|
43 |
+
if path is None:
|
44 |
+
return ""
|
45 |
+
|
46 |
+
embeddings: torch.Tensor | dict[str, Any] = torch.load( # type: ignore
|
47 |
+
path, weights_only=True, map_location=self.device
|
48 |
+
)
|
49 |
+
|
50 |
+
if isinstance(embeddings, dict):
|
51 |
+
assert (
|
52 |
+
key is not None
|
53 |
+
), "Key must be provided to access the negative embedding."
|
54 |
+
key_sequence = key.split(".")
|
55 |
+
for key in key_sequence:
|
56 |
+
assert (
|
57 |
+
key in embeddings
|
58 |
+
), f"Key {key} not found in the negative embedding dictionary. Available keys: {list(embeddings.keys())}"
|
59 |
+
embeddings = embeddings[key]
|
60 |
+
|
61 |
+
assert isinstance(
|
62 |
+
embeddings, torch.Tensor
|
63 |
+
), f"The negative embedding must be a tensor, found {type(embeddings)}."
|
64 |
+
assert (
|
65 |
+
embeddings.ndim == 2
|
66 |
+
), f"The negative embedding must be a 2D tensor, found {embeddings.ndim}D tensor."
|
67 |
+
|
68 |
+
extender = ConceptExtender(self.sd.clip_text_encoder)
|
69 |
+
negative_embedding_token = ", "
|
70 |
+
for i, embedding in enumerate(embeddings):
|
71 |
+
embedding = embedding.to(device=self.device, dtype=self.dtype)
|
72 |
+
extender.add_concept(token=f"<{i}>", embedding=embedding)
|
73 |
+
negative_embedding_token += f"<{i}> "
|
74 |
+
extender.inject()
|
75 |
+
|
76 |
+
return negative_embedding_token
|
77 |
+
|
78 |
+
def pre_upscale(
|
79 |
+
self,
|
80 |
+
image: Image.Image,
|
81 |
+
upscale_factor: float,
|
82 |
+
use_esrgan: bool = True,
|
83 |
+
use_esrgan_tiling: bool = True,
|
84 |
+
**_: Any,
|
85 |
+
) -> Image.Image:
|
86 |
+
if self.esrgan is None or not use_esrgan:
|
87 |
+
return super().pre_upscale(image=image, upscale_factor=upscale_factor)
|
88 |
+
|
89 |
+
width, height = image.size
|
90 |
+
|
91 |
+
if use_esrgan_tiling:
|
92 |
+
image = self.esrgan.upscale_with_tiling(image)
|
93 |
+
else:
|
94 |
+
image = self.esrgan.upscale_without_tiling(image)
|
95 |
+
|
96 |
+
return image.resize(
|
97 |
+
size=(
|
98 |
+
int(width * upscale_factor),
|
99 |
+
int(height * upscale_factor),
|
100 |
+
),
|
101 |
+
resample=Image.LANCZOS,
|
102 |
+
)
|
src/esrgan_model.py
ADDED
@@ -0,0 +1,1068 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# type: ignore
|
2 |
+
"""
|
3 |
+
Modified from https://github.com/philz1337x/clarity-upscaler
|
4 |
+
which is a copy of https://github.com/AUTOMATIC1111/stable-diffusion-webui
|
5 |
+
which is a copy of https://github.com/victorca25/iNNfer
|
6 |
+
which is a copy of https://github.com/xinntao/ESRGAN
|
7 |
+
"""
|
8 |
+
|
9 |
+
import math
|
10 |
+
import os
|
11 |
+
from collections import OrderedDict, namedtuple
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
####################
|
21 |
+
# RRDBNet Generator
|
22 |
+
####################
|
23 |
+
|
24 |
+
|
25 |
+
class RRDBNet(nn.Module):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
in_nc,
|
29 |
+
out_nc,
|
30 |
+
nf,
|
31 |
+
nb,
|
32 |
+
nr=3,
|
33 |
+
gc=32,
|
34 |
+
upscale=4,
|
35 |
+
norm_type=None,
|
36 |
+
act_type="leakyrelu",
|
37 |
+
mode="CNA",
|
38 |
+
upsample_mode="upconv",
|
39 |
+
convtype="Conv2D",
|
40 |
+
finalact=None,
|
41 |
+
gaussian_noise=False,
|
42 |
+
plus=False,
|
43 |
+
):
|
44 |
+
super(RRDBNet, self).__init__()
|
45 |
+
n_upscale = int(math.log(upscale, 2))
|
46 |
+
if upscale == 3:
|
47 |
+
n_upscale = 1
|
48 |
+
|
49 |
+
self.resrgan_scale = 0
|
50 |
+
if in_nc % 16 == 0:
|
51 |
+
self.resrgan_scale = 1
|
52 |
+
elif in_nc != 4 and in_nc % 4 == 0:
|
53 |
+
self.resrgan_scale = 2
|
54 |
+
|
55 |
+
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
56 |
+
rb_blocks = [
|
57 |
+
RRDB(
|
58 |
+
nf,
|
59 |
+
nr,
|
60 |
+
kernel_size=3,
|
61 |
+
gc=32,
|
62 |
+
stride=1,
|
63 |
+
bias=1,
|
64 |
+
pad_type="zero",
|
65 |
+
norm_type=norm_type,
|
66 |
+
act_type=act_type,
|
67 |
+
mode="CNA",
|
68 |
+
convtype=convtype,
|
69 |
+
gaussian_noise=gaussian_noise,
|
70 |
+
plus=plus,
|
71 |
+
)
|
72 |
+
for _ in range(nb)
|
73 |
+
]
|
74 |
+
LR_conv = conv_block(
|
75 |
+
nf,
|
76 |
+
nf,
|
77 |
+
kernel_size=3,
|
78 |
+
norm_type=norm_type,
|
79 |
+
act_type=None,
|
80 |
+
mode=mode,
|
81 |
+
convtype=convtype,
|
82 |
+
)
|
83 |
+
|
84 |
+
if upsample_mode == "upconv":
|
85 |
+
upsample_block = upconv_block
|
86 |
+
elif upsample_mode == "pixelshuffle":
|
87 |
+
upsample_block = pixelshuffle_block
|
88 |
+
else:
|
89 |
+
raise NotImplementedError(f"upsample mode [{upsample_mode}] is not found")
|
90 |
+
if upscale == 3:
|
91 |
+
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
|
92 |
+
else:
|
93 |
+
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
|
94 |
+
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
|
95 |
+
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
|
96 |
+
|
97 |
+
outact = act(finalact) if finalact else None
|
98 |
+
|
99 |
+
self.model = sequential(
|
100 |
+
fea_conv,
|
101 |
+
ShortcutBlock(sequential(*rb_blocks, LR_conv)),
|
102 |
+
*upsampler,
|
103 |
+
HR_conv0,
|
104 |
+
HR_conv1,
|
105 |
+
outact,
|
106 |
+
)
|
107 |
+
|
108 |
+
def forward(self, x, outm=None):
|
109 |
+
if self.resrgan_scale == 1:
|
110 |
+
feat = pixel_unshuffle(x, scale=4)
|
111 |
+
elif self.resrgan_scale == 2:
|
112 |
+
feat = pixel_unshuffle(x, scale=2)
|
113 |
+
else:
|
114 |
+
feat = x
|
115 |
+
|
116 |
+
return self.model(feat)
|
117 |
+
|
118 |
+
|
119 |
+
class RRDB(nn.Module):
|
120 |
+
"""
|
121 |
+
Residual in Residual Dense Block
|
122 |
+
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
nf,
|
128 |
+
nr=3,
|
129 |
+
kernel_size=3,
|
130 |
+
gc=32,
|
131 |
+
stride=1,
|
132 |
+
bias=1,
|
133 |
+
pad_type="zero",
|
134 |
+
norm_type=None,
|
135 |
+
act_type="leakyrelu",
|
136 |
+
mode="CNA",
|
137 |
+
convtype="Conv2D",
|
138 |
+
spectral_norm=False,
|
139 |
+
gaussian_noise=False,
|
140 |
+
plus=False,
|
141 |
+
):
|
142 |
+
super(RRDB, self).__init__()
|
143 |
+
# This is for backwards compatibility with existing models
|
144 |
+
if nr == 3:
|
145 |
+
self.RDB1 = ResidualDenseBlock_5C(
|
146 |
+
nf,
|
147 |
+
kernel_size,
|
148 |
+
gc,
|
149 |
+
stride,
|
150 |
+
bias,
|
151 |
+
pad_type,
|
152 |
+
norm_type,
|
153 |
+
act_type,
|
154 |
+
mode,
|
155 |
+
convtype,
|
156 |
+
spectral_norm=spectral_norm,
|
157 |
+
gaussian_noise=gaussian_noise,
|
158 |
+
plus=plus,
|
159 |
+
)
|
160 |
+
self.RDB2 = ResidualDenseBlock_5C(
|
161 |
+
nf,
|
162 |
+
kernel_size,
|
163 |
+
gc,
|
164 |
+
stride,
|
165 |
+
bias,
|
166 |
+
pad_type,
|
167 |
+
norm_type,
|
168 |
+
act_type,
|
169 |
+
mode,
|
170 |
+
convtype,
|
171 |
+
spectral_norm=spectral_norm,
|
172 |
+
gaussian_noise=gaussian_noise,
|
173 |
+
plus=plus,
|
174 |
+
)
|
175 |
+
self.RDB3 = ResidualDenseBlock_5C(
|
176 |
+
nf,
|
177 |
+
kernel_size,
|
178 |
+
gc,
|
179 |
+
stride,
|
180 |
+
bias,
|
181 |
+
pad_type,
|
182 |
+
norm_type,
|
183 |
+
act_type,
|
184 |
+
mode,
|
185 |
+
convtype,
|
186 |
+
spectral_norm=spectral_norm,
|
187 |
+
gaussian_noise=gaussian_noise,
|
188 |
+
plus=plus,
|
189 |
+
)
|
190 |
+
else:
|
191 |
+
RDB_list = [
|
192 |
+
ResidualDenseBlock_5C(
|
193 |
+
nf,
|
194 |
+
kernel_size,
|
195 |
+
gc,
|
196 |
+
stride,
|
197 |
+
bias,
|
198 |
+
pad_type,
|
199 |
+
norm_type,
|
200 |
+
act_type,
|
201 |
+
mode,
|
202 |
+
convtype,
|
203 |
+
spectral_norm=spectral_norm,
|
204 |
+
gaussian_noise=gaussian_noise,
|
205 |
+
plus=plus,
|
206 |
+
)
|
207 |
+
for _ in range(nr)
|
208 |
+
]
|
209 |
+
self.RDBs = nn.Sequential(*RDB_list)
|
210 |
+
|
211 |
+
def forward(self, x):
|
212 |
+
if hasattr(self, "RDB1"):
|
213 |
+
out = self.RDB1(x)
|
214 |
+
out = self.RDB2(out)
|
215 |
+
out = self.RDB3(out)
|
216 |
+
else:
|
217 |
+
out = self.RDBs(x)
|
218 |
+
return out * 0.2 + x
|
219 |
+
|
220 |
+
|
221 |
+
class ResidualDenseBlock_5C(nn.Module):
|
222 |
+
"""
|
223 |
+
Residual Dense Block
|
224 |
+
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
|
225 |
+
Modified options that can be used:
|
226 |
+
- "Partial Convolution based Padding" arXiv:1811.11718
|
227 |
+
- "Spectral normalization" arXiv:1802.05957
|
228 |
+
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
|
229 |
+
{Rakotonirina} and A. {Rasoanaivo}
|
230 |
+
"""
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
nf=64,
|
235 |
+
kernel_size=3,
|
236 |
+
gc=32,
|
237 |
+
stride=1,
|
238 |
+
bias=1,
|
239 |
+
pad_type="zero",
|
240 |
+
norm_type=None,
|
241 |
+
act_type="leakyrelu",
|
242 |
+
mode="CNA",
|
243 |
+
convtype="Conv2D",
|
244 |
+
spectral_norm=False,
|
245 |
+
gaussian_noise=False,
|
246 |
+
plus=False,
|
247 |
+
):
|
248 |
+
super(ResidualDenseBlock_5C, self).__init__()
|
249 |
+
|
250 |
+
self.noise = GaussianNoise() if gaussian_noise else None
|
251 |
+
self.conv1x1 = conv1x1(nf, gc) if plus else None
|
252 |
+
|
253 |
+
self.conv1 = conv_block(
|
254 |
+
nf,
|
255 |
+
gc,
|
256 |
+
kernel_size,
|
257 |
+
stride,
|
258 |
+
bias=bias,
|
259 |
+
pad_type=pad_type,
|
260 |
+
norm_type=norm_type,
|
261 |
+
act_type=act_type,
|
262 |
+
mode=mode,
|
263 |
+
convtype=convtype,
|
264 |
+
spectral_norm=spectral_norm,
|
265 |
+
)
|
266 |
+
self.conv2 = conv_block(
|
267 |
+
nf + gc,
|
268 |
+
gc,
|
269 |
+
kernel_size,
|
270 |
+
stride,
|
271 |
+
bias=bias,
|
272 |
+
pad_type=pad_type,
|
273 |
+
norm_type=norm_type,
|
274 |
+
act_type=act_type,
|
275 |
+
mode=mode,
|
276 |
+
convtype=convtype,
|
277 |
+
spectral_norm=spectral_norm,
|
278 |
+
)
|
279 |
+
self.conv3 = conv_block(
|
280 |
+
nf + 2 * gc,
|
281 |
+
gc,
|
282 |
+
kernel_size,
|
283 |
+
stride,
|
284 |
+
bias=bias,
|
285 |
+
pad_type=pad_type,
|
286 |
+
norm_type=norm_type,
|
287 |
+
act_type=act_type,
|
288 |
+
mode=mode,
|
289 |
+
convtype=convtype,
|
290 |
+
spectral_norm=spectral_norm,
|
291 |
+
)
|
292 |
+
self.conv4 = conv_block(
|
293 |
+
nf + 3 * gc,
|
294 |
+
gc,
|
295 |
+
kernel_size,
|
296 |
+
stride,
|
297 |
+
bias=bias,
|
298 |
+
pad_type=pad_type,
|
299 |
+
norm_type=norm_type,
|
300 |
+
act_type=act_type,
|
301 |
+
mode=mode,
|
302 |
+
convtype=convtype,
|
303 |
+
spectral_norm=spectral_norm,
|
304 |
+
)
|
305 |
+
if mode == "CNA":
|
306 |
+
last_act = None
|
307 |
+
else:
|
308 |
+
last_act = act_type
|
309 |
+
self.conv5 = conv_block(
|
310 |
+
nf + 4 * gc,
|
311 |
+
nf,
|
312 |
+
3,
|
313 |
+
stride,
|
314 |
+
bias=bias,
|
315 |
+
pad_type=pad_type,
|
316 |
+
norm_type=norm_type,
|
317 |
+
act_type=last_act,
|
318 |
+
mode=mode,
|
319 |
+
convtype=convtype,
|
320 |
+
spectral_norm=spectral_norm,
|
321 |
+
)
|
322 |
+
|
323 |
+
def forward(self, x):
|
324 |
+
x1 = self.conv1(x)
|
325 |
+
x2 = self.conv2(torch.cat((x, x1), 1))
|
326 |
+
if self.conv1x1:
|
327 |
+
x2 = x2 + self.conv1x1(x)
|
328 |
+
x3 = self.conv3(torch.cat((x, x1, x2), 1))
|
329 |
+
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
|
330 |
+
if self.conv1x1:
|
331 |
+
x4 = x4 + x2
|
332 |
+
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
333 |
+
if self.noise:
|
334 |
+
return self.noise(x5.mul(0.2) + x)
|
335 |
+
else:
|
336 |
+
return x5 * 0.2 + x
|
337 |
+
|
338 |
+
|
339 |
+
####################
|
340 |
+
# ESRGANplus
|
341 |
+
####################
|
342 |
+
|
343 |
+
|
344 |
+
class GaussianNoise(nn.Module):
|
345 |
+
def __init__(self, sigma=0.1, is_relative_detach=False):
|
346 |
+
super().__init__()
|
347 |
+
self.sigma = sigma
|
348 |
+
self.is_relative_detach = is_relative_detach
|
349 |
+
self.noise = torch.tensor(0, dtype=torch.float)
|
350 |
+
|
351 |
+
def forward(self, x):
|
352 |
+
if self.training and self.sigma != 0:
|
353 |
+
self.noise = self.noise.to(device=x.device, dtype=x.device)
|
354 |
+
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
|
355 |
+
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
|
356 |
+
x = x + sampled_noise
|
357 |
+
return x
|
358 |
+
|
359 |
+
|
360 |
+
def conv1x1(in_planes, out_planes, stride=1):
|
361 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
362 |
+
|
363 |
+
|
364 |
+
####################
|
365 |
+
# SRVGGNetCompact
|
366 |
+
####################
|
367 |
+
|
368 |
+
|
369 |
+
class SRVGGNetCompact(nn.Module):
|
370 |
+
"""A compact VGG-style network structure for super-resolution.
|
371 |
+
This class is copied from https://github.com/xinntao/Real-ESRGAN
|
372 |
+
"""
|
373 |
+
|
374 |
+
def __init__(
|
375 |
+
self,
|
376 |
+
num_in_ch=3,
|
377 |
+
num_out_ch=3,
|
378 |
+
num_feat=64,
|
379 |
+
num_conv=16,
|
380 |
+
upscale=4,
|
381 |
+
act_type="prelu",
|
382 |
+
):
|
383 |
+
super(SRVGGNetCompact, self).__init__()
|
384 |
+
self.num_in_ch = num_in_ch
|
385 |
+
self.num_out_ch = num_out_ch
|
386 |
+
self.num_feat = num_feat
|
387 |
+
self.num_conv = num_conv
|
388 |
+
self.upscale = upscale
|
389 |
+
self.act_type = act_type
|
390 |
+
|
391 |
+
self.body = nn.ModuleList()
|
392 |
+
# the first conv
|
393 |
+
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
|
394 |
+
# the first activation
|
395 |
+
if act_type == "relu":
|
396 |
+
activation = nn.ReLU(inplace=True)
|
397 |
+
elif act_type == "prelu":
|
398 |
+
activation = nn.PReLU(num_parameters=num_feat)
|
399 |
+
elif act_type == "leakyrelu":
|
400 |
+
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
401 |
+
self.body.append(activation)
|
402 |
+
|
403 |
+
# the body structure
|
404 |
+
for _ in range(num_conv):
|
405 |
+
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
|
406 |
+
# activation
|
407 |
+
if act_type == "relu":
|
408 |
+
activation = nn.ReLU(inplace=True)
|
409 |
+
elif act_type == "prelu":
|
410 |
+
activation = nn.PReLU(num_parameters=num_feat)
|
411 |
+
elif act_type == "leakyrelu":
|
412 |
+
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
413 |
+
self.body.append(activation)
|
414 |
+
|
415 |
+
# the last conv
|
416 |
+
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
|
417 |
+
# upsample
|
418 |
+
self.upsampler = nn.PixelShuffle(upscale)
|
419 |
+
|
420 |
+
def forward(self, x):
|
421 |
+
out = x
|
422 |
+
for i in range(0, len(self.body)):
|
423 |
+
out = self.body[i](out)
|
424 |
+
|
425 |
+
out = self.upsampler(out)
|
426 |
+
# add the nearest upsampled image, so that the network learns the residual
|
427 |
+
base = F.interpolate(x, scale_factor=self.upscale, mode="nearest")
|
428 |
+
out += base
|
429 |
+
return out
|
430 |
+
|
431 |
+
|
432 |
+
####################
|
433 |
+
# Upsampler
|
434 |
+
####################
|
435 |
+
|
436 |
+
|
437 |
+
class Upsample(nn.Module):
|
438 |
+
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
|
439 |
+
The input data is assumed to be of the form
|
440 |
+
`minibatch x channels x [optional depth] x [optional height] x width`.
|
441 |
+
"""
|
442 |
+
|
443 |
+
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
|
444 |
+
super(Upsample, self).__init__()
|
445 |
+
if isinstance(scale_factor, tuple):
|
446 |
+
self.scale_factor = tuple(float(factor) for factor in scale_factor)
|
447 |
+
else:
|
448 |
+
self.scale_factor = float(scale_factor) if scale_factor else None
|
449 |
+
self.mode = mode
|
450 |
+
self.size = size
|
451 |
+
self.align_corners = align_corners
|
452 |
+
|
453 |
+
def forward(self, x):
|
454 |
+
return nn.functional.interpolate(
|
455 |
+
x,
|
456 |
+
size=self.size,
|
457 |
+
scale_factor=self.scale_factor,
|
458 |
+
mode=self.mode,
|
459 |
+
align_corners=self.align_corners,
|
460 |
+
)
|
461 |
+
|
462 |
+
def extra_repr(self):
|
463 |
+
if self.scale_factor is not None:
|
464 |
+
info = f"scale_factor={self.scale_factor}"
|
465 |
+
else:
|
466 |
+
info = f"size={self.size}"
|
467 |
+
info += f", mode={self.mode}"
|
468 |
+
return info
|
469 |
+
|
470 |
+
|
471 |
+
def pixel_unshuffle(x, scale):
|
472 |
+
"""Pixel unshuffle.
|
473 |
+
Args:
|
474 |
+
x (Tensor): Input feature with shape (b, c, hh, hw).
|
475 |
+
scale (int): Downsample ratio.
|
476 |
+
Returns:
|
477 |
+
Tensor: the pixel unshuffled feature.
|
478 |
+
"""
|
479 |
+
b, c, hh, hw = x.size()
|
480 |
+
out_channel = c * (scale**2)
|
481 |
+
assert hh % scale == 0 and hw % scale == 0
|
482 |
+
h = hh // scale
|
483 |
+
w = hw // scale
|
484 |
+
x_view = x.view(b, c, h, scale, w, scale)
|
485 |
+
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
|
486 |
+
|
487 |
+
|
488 |
+
def pixelshuffle_block(
|
489 |
+
in_nc,
|
490 |
+
out_nc,
|
491 |
+
upscale_factor=2,
|
492 |
+
kernel_size=3,
|
493 |
+
stride=1,
|
494 |
+
bias=True,
|
495 |
+
pad_type="zero",
|
496 |
+
norm_type=None,
|
497 |
+
act_type="relu",
|
498 |
+
convtype="Conv2D",
|
499 |
+
):
|
500 |
+
"""
|
501 |
+
Pixel shuffle layer
|
502 |
+
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
|
503 |
+
Neural Network, CVPR17)
|
504 |
+
"""
|
505 |
+
conv = conv_block(
|
506 |
+
in_nc,
|
507 |
+
out_nc * (upscale_factor**2),
|
508 |
+
kernel_size,
|
509 |
+
stride,
|
510 |
+
bias=bias,
|
511 |
+
pad_type=pad_type,
|
512 |
+
norm_type=None,
|
513 |
+
act_type=None,
|
514 |
+
convtype=convtype,
|
515 |
+
)
|
516 |
+
pixel_shuffle = nn.PixelShuffle(upscale_factor)
|
517 |
+
|
518 |
+
n = norm(norm_type, out_nc) if norm_type else None
|
519 |
+
a = act(act_type) if act_type else None
|
520 |
+
return sequential(conv, pixel_shuffle, n, a)
|
521 |
+
|
522 |
+
|
523 |
+
def upconv_block(
|
524 |
+
in_nc,
|
525 |
+
out_nc,
|
526 |
+
upscale_factor=2,
|
527 |
+
kernel_size=3,
|
528 |
+
stride=1,
|
529 |
+
bias=True,
|
530 |
+
pad_type="zero",
|
531 |
+
norm_type=None,
|
532 |
+
act_type="relu",
|
533 |
+
mode="nearest",
|
534 |
+
convtype="Conv2D",
|
535 |
+
):
|
536 |
+
"""Upconv layer"""
|
537 |
+
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == "Conv3D" else upscale_factor
|
538 |
+
upsample = Upsample(scale_factor=upscale_factor, mode=mode)
|
539 |
+
conv = conv_block(
|
540 |
+
in_nc,
|
541 |
+
out_nc,
|
542 |
+
kernel_size,
|
543 |
+
stride,
|
544 |
+
bias=bias,
|
545 |
+
pad_type=pad_type,
|
546 |
+
norm_type=norm_type,
|
547 |
+
act_type=act_type,
|
548 |
+
convtype=convtype,
|
549 |
+
)
|
550 |
+
return sequential(upsample, conv)
|
551 |
+
|
552 |
+
|
553 |
+
####################
|
554 |
+
# Basic blocks
|
555 |
+
####################
|
556 |
+
|
557 |
+
|
558 |
+
def make_layer(basic_block, num_basic_block, **kwarg):
|
559 |
+
"""Make layers by stacking the same blocks.
|
560 |
+
Args:
|
561 |
+
basic_block (nn.module): nn.module class for basic block. (block)
|
562 |
+
num_basic_block (int): number of blocks. (n_layers)
|
563 |
+
Returns:
|
564 |
+
nn.Sequential: Stacked blocks in nn.Sequential.
|
565 |
+
"""
|
566 |
+
layers = []
|
567 |
+
for _ in range(num_basic_block):
|
568 |
+
layers.append(basic_block(**kwarg))
|
569 |
+
return nn.Sequential(*layers)
|
570 |
+
|
571 |
+
|
572 |
+
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
|
573 |
+
"""activation helper"""
|
574 |
+
act_type = act_type.lower()
|
575 |
+
if act_type == "relu":
|
576 |
+
layer = nn.ReLU(inplace)
|
577 |
+
elif act_type in ("leakyrelu", "lrelu"):
|
578 |
+
layer = nn.LeakyReLU(neg_slope, inplace)
|
579 |
+
elif act_type == "prelu":
|
580 |
+
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
|
581 |
+
elif act_type == "tanh": # [-1, 1] range output
|
582 |
+
layer = nn.Tanh()
|
583 |
+
elif act_type == "sigmoid": # [0, 1] range output
|
584 |
+
layer = nn.Sigmoid()
|
585 |
+
else:
|
586 |
+
raise NotImplementedError(f"activation layer [{act_type}] is not found")
|
587 |
+
return layer
|
588 |
+
|
589 |
+
|
590 |
+
class Identity(nn.Module):
|
591 |
+
def __init__(self, *kwargs):
|
592 |
+
super(Identity, self).__init__()
|
593 |
+
|
594 |
+
def forward(self, x, *kwargs):
|
595 |
+
return x
|
596 |
+
|
597 |
+
|
598 |
+
def norm(norm_type, nc):
|
599 |
+
"""Return a normalization layer"""
|
600 |
+
norm_type = norm_type.lower()
|
601 |
+
if norm_type == "batch":
|
602 |
+
layer = nn.BatchNorm2d(nc, affine=True)
|
603 |
+
elif norm_type == "instance":
|
604 |
+
layer = nn.InstanceNorm2d(nc, affine=False)
|
605 |
+
elif norm_type == "none":
|
606 |
+
|
607 |
+
def norm_layer(x):
|
608 |
+
return Identity()
|
609 |
+
else:
|
610 |
+
raise NotImplementedError(f"normalization layer [{norm_type}] is not found")
|
611 |
+
return layer
|
612 |
+
|
613 |
+
|
614 |
+
def pad(pad_type, padding):
|
615 |
+
"""padding layer helper"""
|
616 |
+
pad_type = pad_type.lower()
|
617 |
+
if padding == 0:
|
618 |
+
return None
|
619 |
+
if pad_type == "reflect":
|
620 |
+
layer = nn.ReflectionPad2d(padding)
|
621 |
+
elif pad_type == "replicate":
|
622 |
+
layer = nn.ReplicationPad2d(padding)
|
623 |
+
elif pad_type == "zero":
|
624 |
+
layer = nn.ZeroPad2d(padding)
|
625 |
+
else:
|
626 |
+
raise NotImplementedError(f"padding layer [{pad_type}] is not implemented")
|
627 |
+
return layer
|
628 |
+
|
629 |
+
|
630 |
+
def get_valid_padding(kernel_size, dilation):
|
631 |
+
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
|
632 |
+
padding = (kernel_size - 1) // 2
|
633 |
+
return padding
|
634 |
+
|
635 |
+
|
636 |
+
class ShortcutBlock(nn.Module):
|
637 |
+
"""Elementwise sum the output of a submodule to its input"""
|
638 |
+
|
639 |
+
def __init__(self, submodule):
|
640 |
+
super(ShortcutBlock, self).__init__()
|
641 |
+
self.sub = submodule
|
642 |
+
|
643 |
+
def forward(self, x):
|
644 |
+
output = x + self.sub(x)
|
645 |
+
return output
|
646 |
+
|
647 |
+
def __repr__(self):
|
648 |
+
return "Identity + \n|" + self.sub.__repr__().replace("\n", "\n|")
|
649 |
+
|
650 |
+
|
651 |
+
def sequential(*args):
|
652 |
+
"""Flatten Sequential. It unwraps nn.Sequential."""
|
653 |
+
if len(args) == 1:
|
654 |
+
if isinstance(args[0], OrderedDict):
|
655 |
+
raise NotImplementedError("sequential does not support OrderedDict input.")
|
656 |
+
return args[0] # No sequential is needed.
|
657 |
+
modules = []
|
658 |
+
for module in args:
|
659 |
+
if isinstance(module, nn.Sequential):
|
660 |
+
for submodule in module.children():
|
661 |
+
modules.append(submodule)
|
662 |
+
elif isinstance(module, nn.Module):
|
663 |
+
modules.append(module)
|
664 |
+
return nn.Sequential(*modules)
|
665 |
+
|
666 |
+
|
667 |
+
def conv_block(
|
668 |
+
in_nc,
|
669 |
+
out_nc,
|
670 |
+
kernel_size,
|
671 |
+
stride=1,
|
672 |
+
dilation=1,
|
673 |
+
groups=1,
|
674 |
+
bias=True,
|
675 |
+
pad_type="zero",
|
676 |
+
norm_type=None,
|
677 |
+
act_type="relu",
|
678 |
+
mode="CNA",
|
679 |
+
convtype="Conv2D",
|
680 |
+
spectral_norm=False,
|
681 |
+
):
|
682 |
+
"""Conv layer with padding, normalization, activation"""
|
683 |
+
assert mode in ["CNA", "NAC", "CNAC"], f"Wrong conv mode [{mode}]"
|
684 |
+
padding = get_valid_padding(kernel_size, dilation)
|
685 |
+
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
|
686 |
+
padding = padding if pad_type == "zero" else 0
|
687 |
+
|
688 |
+
if convtype == "PartialConv2D":
|
689 |
+
# this is definitely not going to work, but PartialConv2d doesn't work anyway and this shuts up static analyzer
|
690 |
+
from torchvision.ops import PartialConv2d
|
691 |
+
|
692 |
+
c = PartialConv2d(
|
693 |
+
in_nc,
|
694 |
+
out_nc,
|
695 |
+
kernel_size=kernel_size,
|
696 |
+
stride=stride,
|
697 |
+
padding=padding,
|
698 |
+
dilation=dilation,
|
699 |
+
bias=bias,
|
700 |
+
groups=groups,
|
701 |
+
)
|
702 |
+
elif convtype == "DeformConv2D":
|
703 |
+
from torchvision.ops import DeformConv2d # not tested
|
704 |
+
|
705 |
+
c = DeformConv2d(
|
706 |
+
in_nc,
|
707 |
+
out_nc,
|
708 |
+
kernel_size=kernel_size,
|
709 |
+
stride=stride,
|
710 |
+
padding=padding,
|
711 |
+
dilation=dilation,
|
712 |
+
bias=bias,
|
713 |
+
groups=groups,
|
714 |
+
)
|
715 |
+
elif convtype == "Conv3D":
|
716 |
+
c = nn.Conv3d(
|
717 |
+
in_nc,
|
718 |
+
out_nc,
|
719 |
+
kernel_size=kernel_size,
|
720 |
+
stride=stride,
|
721 |
+
padding=padding,
|
722 |
+
dilation=dilation,
|
723 |
+
bias=bias,
|
724 |
+
groups=groups,
|
725 |
+
)
|
726 |
+
else:
|
727 |
+
c = nn.Conv2d(
|
728 |
+
in_nc,
|
729 |
+
out_nc,
|
730 |
+
kernel_size=kernel_size,
|
731 |
+
stride=stride,
|
732 |
+
padding=padding,
|
733 |
+
dilation=dilation,
|
734 |
+
bias=bias,
|
735 |
+
groups=groups,
|
736 |
+
)
|
737 |
+
|
738 |
+
if spectral_norm:
|
739 |
+
c = nn.utils.spectral_norm(c)
|
740 |
+
|
741 |
+
a = act(act_type) if act_type else None
|
742 |
+
if "CNA" in mode:
|
743 |
+
n = norm(norm_type, out_nc) if norm_type else None
|
744 |
+
return sequential(p, c, n, a)
|
745 |
+
elif mode == "NAC":
|
746 |
+
if norm_type is None and act_type is not None:
|
747 |
+
a = act(act_type, inplace=False)
|
748 |
+
n = norm(norm_type, in_nc) if norm_type else None
|
749 |
+
return sequential(n, a, p, c)
|
750 |
+
|
751 |
+
|
752 |
+
def load_models(
|
753 |
+
model_path: Path,
|
754 |
+
command_path: str = None,
|
755 |
+
) -> list:
|
756 |
+
"""
|
757 |
+
A one-and done loader to try finding the desired models in specified directories.
|
758 |
+
|
759 |
+
@param download_name: Specify to download from model_url immediately.
|
760 |
+
@param model_url: If no other models are found, this will be downloaded on upscale.
|
761 |
+
@param model_path: The location to store/find models in.
|
762 |
+
@param command_path: A command-line argument to search for models in first.
|
763 |
+
@param ext_filter: An optional list of filename extensions to filter by
|
764 |
+
@return: A list of paths containing the desired model(s)
|
765 |
+
"""
|
766 |
+
output = []
|
767 |
+
|
768 |
+
try:
|
769 |
+
places = []
|
770 |
+
if command_path is not None and command_path != model_path:
|
771 |
+
pretrained_path = os.path.join(command_path, "experiments/pretrained_models")
|
772 |
+
if os.path.exists(pretrained_path):
|
773 |
+
print(f"Appending path: {pretrained_path}")
|
774 |
+
places.append(pretrained_path)
|
775 |
+
elif os.path.exists(command_path):
|
776 |
+
places.append(command_path)
|
777 |
+
|
778 |
+
places.append(model_path)
|
779 |
+
|
780 |
+
except Exception:
|
781 |
+
pass
|
782 |
+
|
783 |
+
return output
|
784 |
+
|
785 |
+
|
786 |
+
def mod2normal(state_dict):
|
787 |
+
# this code is copied from https://github.com/victorca25/iNNfer
|
788 |
+
if "conv_first.weight" in state_dict:
|
789 |
+
crt_net = {}
|
790 |
+
items = list(state_dict)
|
791 |
+
|
792 |
+
crt_net["model.0.weight"] = state_dict["conv_first.weight"]
|
793 |
+
crt_net["model.0.bias"] = state_dict["conv_first.bias"]
|
794 |
+
|
795 |
+
for k in items.copy():
|
796 |
+
if "RDB" in k:
|
797 |
+
ori_k = k.replace("RRDB_trunk.", "model.1.sub.")
|
798 |
+
if ".weight" in k:
|
799 |
+
ori_k = ori_k.replace(".weight", ".0.weight")
|
800 |
+
elif ".bias" in k:
|
801 |
+
ori_k = ori_k.replace(".bias", ".0.bias")
|
802 |
+
crt_net[ori_k] = state_dict[k]
|
803 |
+
items.remove(k)
|
804 |
+
|
805 |
+
crt_net["model.1.sub.23.weight"] = state_dict["trunk_conv.weight"]
|
806 |
+
crt_net["model.1.sub.23.bias"] = state_dict["trunk_conv.bias"]
|
807 |
+
crt_net["model.3.weight"] = state_dict["upconv1.weight"]
|
808 |
+
crt_net["model.3.bias"] = state_dict["upconv1.bias"]
|
809 |
+
crt_net["model.6.weight"] = state_dict["upconv2.weight"]
|
810 |
+
crt_net["model.6.bias"] = state_dict["upconv2.bias"]
|
811 |
+
crt_net["model.8.weight"] = state_dict["HRconv.weight"]
|
812 |
+
crt_net["model.8.bias"] = state_dict["HRconv.bias"]
|
813 |
+
crt_net["model.10.weight"] = state_dict["conv_last.weight"]
|
814 |
+
crt_net["model.10.bias"] = state_dict["conv_last.bias"]
|
815 |
+
state_dict = crt_net
|
816 |
+
return state_dict
|
817 |
+
|
818 |
+
|
819 |
+
def resrgan2normal(state_dict, nb=23):
|
820 |
+
# this code is copied from https://github.com/victorca25/iNNfer
|
821 |
+
if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
|
822 |
+
re8x = 0
|
823 |
+
crt_net = {}
|
824 |
+
items = list(state_dict)
|
825 |
+
|
826 |
+
crt_net["model.0.weight"] = state_dict["conv_first.weight"]
|
827 |
+
crt_net["model.0.bias"] = state_dict["conv_first.bias"]
|
828 |
+
|
829 |
+
for k in items.copy():
|
830 |
+
if "rdb" in k:
|
831 |
+
ori_k = k.replace("body.", "model.1.sub.")
|
832 |
+
ori_k = ori_k.replace(".rdb", ".RDB")
|
833 |
+
if ".weight" in k:
|
834 |
+
ori_k = ori_k.replace(".weight", ".0.weight")
|
835 |
+
elif ".bias" in k:
|
836 |
+
ori_k = ori_k.replace(".bias", ".0.bias")
|
837 |
+
crt_net[ori_k] = state_dict[k]
|
838 |
+
items.remove(k)
|
839 |
+
|
840 |
+
crt_net[f"model.1.sub.{nb}.weight"] = state_dict["conv_body.weight"]
|
841 |
+
crt_net[f"model.1.sub.{nb}.bias"] = state_dict["conv_body.bias"]
|
842 |
+
crt_net["model.3.weight"] = state_dict["conv_up1.weight"]
|
843 |
+
crt_net["model.3.bias"] = state_dict["conv_up1.bias"]
|
844 |
+
crt_net["model.6.weight"] = state_dict["conv_up2.weight"]
|
845 |
+
crt_net["model.6.bias"] = state_dict["conv_up2.bias"]
|
846 |
+
|
847 |
+
if "conv_up3.weight" in state_dict:
|
848 |
+
# modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
|
849 |
+
re8x = 3
|
850 |
+
crt_net["model.9.weight"] = state_dict["conv_up3.weight"]
|
851 |
+
crt_net["model.9.bias"] = state_dict["conv_up3.bias"]
|
852 |
+
|
853 |
+
crt_net[f"model.{8+re8x}.weight"] = state_dict["conv_hr.weight"]
|
854 |
+
crt_net[f"model.{8+re8x}.bias"] = state_dict["conv_hr.bias"]
|
855 |
+
crt_net[f"model.{10+re8x}.weight"] = state_dict["conv_last.weight"]
|
856 |
+
crt_net[f"model.{10+re8x}.bias"] = state_dict["conv_last.bias"]
|
857 |
+
|
858 |
+
state_dict = crt_net
|
859 |
+
return state_dict
|
860 |
+
|
861 |
+
|
862 |
+
def infer_params(state_dict):
|
863 |
+
# this code is copied from https://github.com/victorca25/iNNfer
|
864 |
+
scale2x = 0
|
865 |
+
scalemin = 6
|
866 |
+
n_uplayer = 0
|
867 |
+
plus = False
|
868 |
+
|
869 |
+
for block in list(state_dict):
|
870 |
+
parts = block.split(".")
|
871 |
+
n_parts = len(parts)
|
872 |
+
if n_parts == 5 and parts[2] == "sub":
|
873 |
+
nb = int(parts[3])
|
874 |
+
elif n_parts == 3:
|
875 |
+
part_num = int(parts[1])
|
876 |
+
if part_num > scalemin and parts[0] == "model" and parts[2] == "weight":
|
877 |
+
scale2x += 1
|
878 |
+
if part_num > n_uplayer:
|
879 |
+
n_uplayer = part_num
|
880 |
+
out_nc = state_dict[block].shape[0]
|
881 |
+
if not plus and "conv1x1" in block:
|
882 |
+
plus = True
|
883 |
+
|
884 |
+
nf = state_dict["model.0.weight"].shape[0]
|
885 |
+
in_nc = state_dict["model.0.weight"].shape[1]
|
886 |
+
out_nc = out_nc
|
887 |
+
scale = 2**scale2x
|
888 |
+
|
889 |
+
return in_nc, out_nc, nf, nb, plus, scale
|
890 |
+
|
891 |
+
|
892 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L64
|
893 |
+
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
|
894 |
+
|
895 |
+
|
896 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L67
|
897 |
+
def split_grid(image, tile_w=512, tile_h=512, overlap=64):
|
898 |
+
w = image.width
|
899 |
+
h = image.height
|
900 |
+
|
901 |
+
non_overlap_width = tile_w - overlap
|
902 |
+
non_overlap_height = tile_h - overlap
|
903 |
+
|
904 |
+
cols = math.ceil((w - overlap) / non_overlap_width)
|
905 |
+
rows = math.ceil((h - overlap) / non_overlap_height)
|
906 |
+
|
907 |
+
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
908 |
+
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
909 |
+
|
910 |
+
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
911 |
+
for row in range(rows):
|
912 |
+
row_images = []
|
913 |
+
|
914 |
+
y = int(row * dy)
|
915 |
+
|
916 |
+
if y + tile_h >= h:
|
917 |
+
y = h - tile_h
|
918 |
+
|
919 |
+
for col in range(cols):
|
920 |
+
x = int(col * dx)
|
921 |
+
|
922 |
+
if x + tile_w >= w:
|
923 |
+
x = w - tile_w
|
924 |
+
|
925 |
+
tile = image.crop((x, y, x + tile_w, y + tile_h))
|
926 |
+
|
927 |
+
row_images.append([x, tile_w, tile])
|
928 |
+
|
929 |
+
grid.tiles.append([y, tile_h, row_images])
|
930 |
+
|
931 |
+
return grid
|
932 |
+
|
933 |
+
|
934 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/images.py#L104
|
935 |
+
def combine_grid(grid):
|
936 |
+
def make_mask_image(r):
|
937 |
+
r = r * 255 / grid.overlap
|
938 |
+
r = r.astype(np.uint8)
|
939 |
+
return Image.fromarray(r, "L")
|
940 |
+
|
941 |
+
mask_w = make_mask_image(
|
942 |
+
np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0)
|
943 |
+
)
|
944 |
+
mask_h = make_mask_image(
|
945 |
+
np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1)
|
946 |
+
)
|
947 |
+
|
948 |
+
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
|
949 |
+
for y, h, row in grid.tiles:
|
950 |
+
combined_row = Image.new("RGB", (grid.image_w, h))
|
951 |
+
for x, w, tile in row:
|
952 |
+
if x == 0:
|
953 |
+
combined_row.paste(tile, (0, 0))
|
954 |
+
continue
|
955 |
+
|
956 |
+
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
|
957 |
+
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
|
958 |
+
|
959 |
+
if y == 0:
|
960 |
+
combined_image.paste(combined_row, (0, 0))
|
961 |
+
continue
|
962 |
+
|
963 |
+
combined_image.paste(
|
964 |
+
combined_row.crop((0, 0, combined_row.width, grid.overlap)),
|
965 |
+
(0, y),
|
966 |
+
mask=mask_h,
|
967 |
+
)
|
968 |
+
combined_image.paste(
|
969 |
+
combined_row.crop((0, grid.overlap, combined_row.width, h)),
|
970 |
+
(0, y + grid.overlap),
|
971 |
+
)
|
972 |
+
|
973 |
+
return combined_image
|
974 |
+
|
975 |
+
|
976 |
+
class UpscalerESRGAN:
|
977 |
+
def __init__(self, model_path: Path, device: torch.device, dtype: torch.dtype):
|
978 |
+
self.device = device
|
979 |
+
self.dtype = dtype
|
980 |
+
self.model_path = model_path
|
981 |
+
self.model = self.load_model(model_path)
|
982 |
+
|
983 |
+
def __call__(self, img: Image.Image) -> Image.Image:
|
984 |
+
return self.upscale_without_tiling(img)
|
985 |
+
|
986 |
+
def to(self, device: torch.device, dtype: torch.dtype):
|
987 |
+
self.device = device
|
988 |
+
self.dtype = dtype
|
989 |
+
self.model.to(device=device, dtype=dtype)
|
990 |
+
|
991 |
+
def load_model(self, path: Path) -> SRVGGNetCompact | RRDBNet:
|
992 |
+
filename = path
|
993 |
+
state_dict = torch.load(filename, weights_only=True, map_location=self.device)
|
994 |
+
|
995 |
+
if "params_ema" in state_dict:
|
996 |
+
state_dict = state_dict["params_ema"]
|
997 |
+
elif "params" in state_dict:
|
998 |
+
state_dict = state_dict["params"]
|
999 |
+
num_conv = 16 if "realesr-animevideov3" in filename else 32
|
1000 |
+
model = SRVGGNetCompact(
|
1001 |
+
num_in_ch=3,
|
1002 |
+
num_out_ch=3,
|
1003 |
+
num_feat=64,
|
1004 |
+
num_conv=num_conv,
|
1005 |
+
upscale=4,
|
1006 |
+
act_type="prelu",
|
1007 |
+
)
|
1008 |
+
model.load_state_dict(state_dict)
|
1009 |
+
model.eval()
|
1010 |
+
return model
|
1011 |
+
|
1012 |
+
if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
|
1013 |
+
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
|
1014 |
+
state_dict = resrgan2normal(state_dict, nb)
|
1015 |
+
elif "conv_first.weight" in state_dict:
|
1016 |
+
state_dict = mod2normal(state_dict)
|
1017 |
+
elif "model.0.weight" not in state_dict:
|
1018 |
+
raise Exception("The file is not a recognized ESRGAN model.")
|
1019 |
+
|
1020 |
+
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
|
1021 |
+
|
1022 |
+
model = RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
|
1023 |
+
model.load_state_dict(state_dict)
|
1024 |
+
model.eval()
|
1025 |
+
|
1026 |
+
return model
|
1027 |
+
|
1028 |
+
def upscale_without_tiling(self, img: Image.Image) -> Image.Image:
|
1029 |
+
img = np.array(img)
|
1030 |
+
img = img[:, :, ::-1]
|
1031 |
+
img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
|
1032 |
+
img = torch.from_numpy(img).float()
|
1033 |
+
img = img.unsqueeze(0).to(device=self.device, dtype=self.dtype)
|
1034 |
+
with torch.no_grad():
|
1035 |
+
output = self.model(img)
|
1036 |
+
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
|
1037 |
+
output = 255.0 * np.moveaxis(output, 0, 2)
|
1038 |
+
output = output.astype(np.uint8)
|
1039 |
+
output = output[:, :, ::-1]
|
1040 |
+
return Image.fromarray(output, "RGB")
|
1041 |
+
|
1042 |
+
# https://github.com/philz1337x/clarity-upscaler/blob/e0cd797198d1e0e745400c04d8d1b98ae508c73b/modules/esrgan_model.py#L208
|
1043 |
+
def upscale_with_tiling(self, img: Image.Image) -> Image.Image:
|
1044 |
+
grid = split_grid(img)
|
1045 |
+
newtiles = []
|
1046 |
+
scale_factor = 1
|
1047 |
+
|
1048 |
+
for y, h, row in grid.tiles:
|
1049 |
+
newrow = []
|
1050 |
+
for tiledata in row:
|
1051 |
+
x, w, tile = tiledata
|
1052 |
+
|
1053 |
+
output = self.upscale_without_tiling(tile)
|
1054 |
+
scale_factor = output.width // tile.width
|
1055 |
+
|
1056 |
+
newrow.append([x * scale_factor, w * scale_factor, output])
|
1057 |
+
newtiles.append([y * scale_factor, h * scale_factor, newrow])
|
1058 |
+
|
1059 |
+
newgrid = Grid(
|
1060 |
+
newtiles,
|
1061 |
+
grid.tile_w * scale_factor,
|
1062 |
+
grid.tile_h * scale_factor,
|
1063 |
+
grid.image_w * scale_factor,
|
1064 |
+
grid.image_h * scale_factor,
|
1065 |
+
grid.overlap * scale_factor,
|
1066 |
+
)
|
1067 |
+
output = combine_grid(newgrid)
|
1068 |
+
return output
|