Spaces:
Build error
Build error
File size: 8,579 Bytes
9d72f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import torch
from torch import nn
from torch.nn import functional as F
import math
from .conv import Conv2dTranspose, Conv2d, nonorm_Conv2d
class Wav2Lip(nn.Module):
def __init__(self):
super(Wav2Lip, self).__init__()
self.face_encoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(6, 16, kernel_size=7, stride=1, padding=3)), # 96,96
nn.Sequential(Conv2d(16, 32, kernel_size=3, stride=2, padding=1), # 48,48
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(32, 64, kernel_size=3, stride=2, padding=1), # 24,24
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(64, 128, kernel_size=3, stride=2, padding=1), # 12,12
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(128, 256, kernel_size=3, stride=2, padding=1), # 6,6
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True)),
nn.Sequential(Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 3,3
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
nn.Sequential(Conv2d(512, 512, kernel_size=3, stride=1, padding=0), # 1, 1
Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
self.audio_encoder = nn.Sequential(
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
self.face_decoder_blocks = nn.ModuleList([
nn.Sequential(Conv2d(512, 512, kernel_size=1, stride=1, padding=0),),
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=1, padding=0), # 3,3
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),),
nn.Sequential(Conv2dTranspose(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),), # 6, 6
nn.Sequential(Conv2dTranspose(768, 384, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(384, 384, kernel_size=3, stride=1, padding=1, residual=True),), # 12, 12
nn.Sequential(Conv2dTranspose(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),), # 24, 24
nn.Sequential(Conv2dTranspose(320, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),), # 48, 48
nn.Sequential(Conv2dTranspose(160, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),),]) # 96,96
self.output_block = nn.Sequential(Conv2d(80, 32, kernel_size=3, stride=1, padding=1),
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0),
nn.Sigmoid())
def forward(self, audio_sequences, face_sequences):
# audio_sequences = (B, T, 1, 80, 16)
B = audio_sequences.size(0)
input_dim_size = len(face_sequences.size())
if input_dim_size > 4:
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
feats = []
x = face_sequences
for f in self.face_encoder_blocks:
x = f(x)
feats.append(x)
x = audio_embedding
for f in self.face_decoder_blocks:
x = f(x)
try:
x = torch.cat((x, feats[-1]), dim=1)
except Exception as e:
print(x.size())
print(feats[-1].size())
raise e
feats.pop()
x = self.output_block(x)
if input_dim_size > 4:
x = torch.split(x, B, dim=0) # [(B, C, H, W)]
outputs = torch.stack(x, dim=2) # (B, C, T, H, W)
else:
outputs = x
return outputs
class Wav2Lip_disc_qual(nn.Module):
def __init__(self):
super(Wav2Lip_disc_qual, self).__init__()
self.face_encoder_blocks = nn.ModuleList([
nn.Sequential(nonorm_Conv2d(3, 32, kernel_size=7, stride=1, padding=3)), # 48,96
nn.Sequential(nonorm_Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=2), # 48,48
nonorm_Conv2d(64, 64, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(64, 128, kernel_size=5, stride=2, padding=2), # 24,24
nonorm_Conv2d(128, 128, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(128, 256, kernel_size=5, stride=2, padding=2), # 12,12
nonorm_Conv2d(256, 256, kernel_size=5, stride=1, padding=2)),
nn.Sequential(nonorm_Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # 6,6
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1)),
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=2, padding=1), # 3,3
nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=1),),
nn.Sequential(nonorm_Conv2d(512, 512, kernel_size=3, stride=1, padding=0), # 1, 1
nonorm_Conv2d(512, 512, kernel_size=1, stride=1, padding=0)),])
self.binary_pred = nn.Sequential(nn.Conv2d(512, 1, kernel_size=1, stride=1, padding=0), nn.Sigmoid())
self.label_noise = .0
def get_lower_half(self, face_sequences):
return face_sequences[:, :, face_sequences.size(2)//2:]
def to_2d(self, face_sequences):
B = face_sequences.size(0)
face_sequences = torch.cat([face_sequences[:, :, i] for i in range(face_sequences.size(2))], dim=0)
return face_sequences
def perceptual_forward(self, false_face_sequences):
false_face_sequences = self.to_2d(false_face_sequences)
false_face_sequences = self.get_lower_half(false_face_sequences)
false_feats = false_face_sequences
for f in self.face_encoder_blocks:
false_feats = f(false_feats)
false_pred_loss = F.binary_cross_entropy(self.binary_pred(false_feats).view(len(false_feats), -1),
torch.ones((len(false_feats), 1)).cuda())
return false_pred_loss
def forward(self, face_sequences):
face_sequences = self.to_2d(face_sequences)
face_sequences = self.get_lower_half(face_sequences)
x = face_sequences
for f in self.face_encoder_blocks:
x = f(x)
return self.binary_pred(x).view(len(x), -1)
|